No Arabic abstract
We present an unprecedentedly large catalog consisting of 2,230 > L* Lya emitters (LAEs) at z=5.7 and 6.6 on the 13.8 and 21.2 deg2 sky, respectively, that are identified by the SILVERRUSH program with the first narrowband imaging data of the Hyper Suprime-Cam (HSC) survey. We confirm that the LAE catalog is reliable on the basis of 96 LAEs whose spectroscopic redshifts are already determined by this program and the previous studies. This catalogue is also available on-line. Based on this catalogue, we derive the rest-frame Lya equivalent-width distributions of LAEs at z~5.7-6.6 that are reasonably explained by the exponential profiles with the scale lengths of ~120-170A, showing no significant evolution from z~5.7 to z~6.6. We find that 275 LAEs with a large equivalent width (LEW) of >240A are candidates of young-metal poor galaxies and AGNs. We also find that the fraction of LEW LAEs to all ones is 4% and 21% at z~5.7 and z~6.6, respectively. Our LAE catalog includes 11 Lya blobs (LABs) that are LAEs with spatially extended Lya emission whose profile is clearly distinguished from those of stellar objects at the >~ 3sigma level. The number density of the LABs at z=6-7 is ~ 10^-7-10^-6 Mpc^-3, being ~ 10-100 times lower than those claimed for LABs at z~ 2-3, suggestive of disappearing LABs at z>~6, albeit with the different selection methods and criteria for the low and high-z LABs.
We present Lya and UV-nebular emission line properties of bright Lya emitters (LAEs) at z=6-7 with a luminosity of log L_Lya/[erg s-1] = 43-44 identified in the 21-deg2 area of the SILVERRUSH early sample developed with the Subaru Hyper Suprime-Cam (HSC) survey data. Our optical spectroscopy newly confirm 21 bright LAEs with clear Lya emission, and contribute to make a spectroscopic sample of 96 LAEs at z=6-7 in SILVERRUSH. From the spectroscopic sample, we select 7 remarkable LAEs as bright as Himiko and CR7 objects, and perform deep Keck/MOSFIRE and Subaru/nuMOIRCS near-infrared spectroscopy reaching the 3sigma-flux limit of ~ 2x10^{-18} erg s-1 for the UV-nebular emission lines of He II1640, C IV1548,1550, and O III]1661,1666. Except for one tentative detection of C IV, we find no strong UV-nebular lines down to the flux limit, placing the upper limits of the rest-frame equivalent widths (EW_0) of ~2-4 A for He II, C IV, and O III] lines. Here we also investigate the VLT/X-SHOOTER spectrum of CR7 whose 6 sigma detection of He II is claimed by Sobral et al. Although two individuals and the ESO-archive service carefully re-analyze the X-SHOOTER data that are used in the study of Sobral et al., no He II signal of CR7 is detected, supportive of weak UV-nebular lines of the bright LAEs even for CR7. Spectral properties of these bright LAEs are thus clearly different from those of faint dropouts at z~7 that have strong UV-nebular lines shown in the various studies. Comparing these bright LAEs and the faint dropouts, we find anti-correlations between the UV-nebular line EW_0 and UV-continuum luminosity, which are similar to those found at z~2-3.
We present the SILVERRUSH program strategy and clustering properties investigated with $sim 2,000$ Ly$alpha$ emitters at $z=5.7$ and $6.6$ found in the early data of the Hyper Suprime-Cam (HSC) Subaru Strategic Program survey exploiting the carefully designed narrowband filters. We derive angular correlation functions with the unprecedentedly large samples of LAEs at $z=6-7$ over the large total area of $14-21$ deg$^2$ corresponding to $0.3-0.5$ comoving Gpc$^2$. We obtain the average large-scale bias values of $b_{rm avg}=4.1pm 0.2$ ($4.5pm 0.6$) at $z=5.7$ ($z=6.6$) for $gtrsim L^*$ LAEs, indicating the weak evolution of LAE clustering from $z=5.7$ to $6.6$. We compare the LAE clustering results with two independent theoretical models that suggest an increase of an LAE clustering signal by the patchy ionized bubbles at the epoch of reionization (EoR), and estimate the neutral hydrogen fraction to be $x_{rm HI}=0.15^{+0.15}_{-0.15}$ at $z=6.6$. Based on the halo occupation distribution models, we find that the $gtrsim L^*$ LAEs are hosted by the dark-matter halos with the average mass of $log (left < M_{rm h} right >/M_odot) =11.1^{+0.2}_{-0.4}$ ($10.8^{+0.3}_{-0.5}$) at $z=5.7$ ($6.6$) with a Ly$alpha$ duty cycle of 1 % or less, where the results of $z=6.6$ LAEs may be slightly biased, due to the increase of the clustering signal at the EoR. Our clustering analysis reveals the low-mass nature of $gtrsim L^*$ LAEs at $z=6-7$, and that these LAEs probably evolve into massive super-$L^*$ galaxies in the present-day universe.
We present the Ly$alpha$ luminosity functions (LFs) at $z=$5.7 and 6.6 derived from a new large sample of 1,266 Ly$alpha$ emitters (LAEs) identified in total areas of 14 and 21 deg$^2$, respectively, based on the early narrowband data of the Subaru/Hyper Suprime-Cam (HSC) survey. Together with careful Monte-Carlo simulations that account for the incompleteness of the LAE selection and the flux estimate systematics in the narrowband imaging, we have determined the Ly$alpha$ LFs with the unprecedentedly small statistical and systematic uncertainties in a wide Ly$alpha$ luminosity range of $10^{42.8-43.8}$ erg s$^{-1}$. We obtain the best-fit Schechter parameters of $L^{*}_{{rm Lya}}=1.6^{+2.2}_{-0.6} (1.7^{+0.3}_{-0.7}) times10^{43}$ erg s$^{-1}$, $phi^{*}_{{rm Lya}}=0.85^{+1.87}_{-0.77} (0.47^{+1.44}_{-0.44})times10^{-4}$ Mpc$^{-3}$, and $alpha=-2.6^{+0.6}_{-0.4} (-2.5^{+0.5}_{-0.5})$ at $z=5.7$ ($6.6$). We confirm that our best-estimate Ly$alpha$ LFs are consistent with the majority of the previous studies, but find that our Ly$alpha$ LFs do not agree with the high number densities of LAEs recently claimed by Matthee/Santos et al.s studies that may overcorrect the incompleteness and the flux systematics. Our Ly$alpha$ LFs at $z=5.7$ and $6.6$ show an indication that the faint-end slope is very steep ($alpha simeq -2.5$), although it is also possible that the bright-end LF results are enhanced by systematic effects such as the contribution from AGNs, blended merging galaxies, and/or large ionized bubbles around bright LAEs. Comparing our Ly$alpha$ LF measurements with four independent reionization models, we estimate the neutral hydrogen fraction of the IGM to be $x_{rm HI}=0.3pm0.2$ at $z=$6.6 that is consistent with the small Thomson scattering optical depth obtained by Planck 2016.
Strong He II emission is produced by low-metallicity stellar populations. Here, we aim to identify and study a sample of He II $lambda 1640$-emitting galaxies at redshifts of $z sim 2.5-5$ in the deep VANDELS spectroscopic survey.. We identified a total of 33 Bright He II emitters (S/N > 2.5) and 17 Faint emitters (S/N < 2.5) in the VANDELS survey and used the available deep multi-wavelength data to study their physical properties. After identifying seven potential AGNs in our sample and discarding them from further analysis, we divided the sample of emph{Bright} emitters into 20 emph{Narrow} (FWHM < 1000 km s$^{-1}$) and 6 emph{Broad} (FWHM > 1000 km s$^{-1}$) He II emitters. We created stacks of Faint, Narrow, and Broad emitters and measured other rest-frame UV lines such as O III] and C III] in both individual galaxies and stacks. We then compared the UV line ratios with the output of stellar population-synthesis models to study the ionising properties of He II emitters. We do not see a significant difference between the stellar masses, star-formation rates, and rest-frame UV magnitudes of galaxies with He II and no He II emission. The stellar population models reproduce the observed UV line ratios from metals in a consistent manner, however they under-predict the total number of heii ionising photons, confirming earlier studies and suggesting that additional mechanisms capable of producing He II are needed, such as X-ray binaries or stripped stars. The models favour subsolar metallicities ($sim0.1Z_odot$) and young stellar ages ($10^6 - 10^7$ years) for the He II emitters. However, the metallicity measured for He II emitters is comparable to that of non-He II emitters at similar redshifts. We argue that galaxies with He II emission may have undergone a recent star-formation event, or may be powered by additional sources of He II ionisation.
We investigate the rest-frame UV morphologies of a large sample of Lyman-a emitters (LAEs) from z~2 to z~6, selected in a uniform way with 16 different narrow- and medium-bands over the full COSMOS field. We use 3045 LAEs with HST coverage in a stacking analysis and find that they have M_UV~-20, below M*_UV at these redshifts. We also focus our analysis on a subsample of 780 individual galaxies with i_AB<25 for which GALFIT converges for 429 of them. The individual median size (re~1 kpc), ellipticities (slightly elongated with (b/a)~0.45), Sersic index (disk-like with n<2) and light concentration (comparable to that of disk or irregular galaxies, with C~2.7) of LAEs show mild evolution from z~2 to z~6. LAEs with the highest rest-frame equivalent widths (EW) are the smallest/most compact (re~0.8 kpc, compared to re~1.5 kpc for the lower EW LAEs). When stacking our samples in bins of fixed Lya luminosity and Lya EW we find evidence for redshift evolution in n and C, but not in galaxy sizes. The evolution seems to be stronger for LAEs with 25<EW<100 {AA}. When compared to other SFGs, LAEs are found to be smaller at all redshifts. The difference between the two populations changes with redshift, from a factor of ~1 at z>5 to SFGs being a factor of ~2-4 larger than LAEs for z<2. This means that at the highest redshifts, where typical sizes approach those of LAEs, the fraction of galaxies showing Lya in emission (and with a high Lya escape fraction) should be much higher, consistent with observations.