Do you want to publish a course? Click here

First ESR Detection of Higgs Amplitude Mode and Analysis with Extended Spin-Wave Theory in Dimer System KCuCl$_3$

70   0   0.0 ( 0 )
 Added by Masashige Matsumoto
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

KCuCl$_3$ is known to show a quantum phase transition from the disordered to antiferromagnetically ordered phases by applying pressure. There is a longitudinal excitation mode (Higgs amplitude mode) in the vicinity of the quantum critical point in the ordered phase. To detect the Higgs amplitude mode, high-pressure ESR measurements are performed in KCuCl$_3$. The experimental data are analyzed by the extended spin-wave theory on the basis of the vector spin chirality. We report the first ESR detection of the Higgs amplitude mode and the important role of the electric dipole described by the vector spin chirality.

rate research

Read More

We report a comprehensive neutron scattering study on the spin excitations in the magnetic Weyl semimetal Co$_3$Sn$_2$S$_2$ with quasi-two-dimensional structure. Both in-plane and out-of-plane dispersions of the spin waves are revealed in the ferromagnetic state, similarly dispersive but damped spin excitations persist into the paramagnetic state. The effective exchange interactions have been estimated by a semi-classical Heisenberg model to consistently reproduce the experimental $T_C$ and spin stiffness. However, a full spin wave gap below $E_g=2.3$ meV is observed at $T=4$ K, much larger than the estimated magnetic anisotropy energy ($sim0.6$ meV), while its temperature dependence indicates a significant contribution from the Weyl fermions. These results suggest that Co$_3$Sn$_2$S$_2$ is a three-dimensional correlated system with large spin stiffness, and the low-energy spin dynamics could interplay with the topological electron states.
KCuCl$_3$ is a three-dimensional coupled spin-dimer system and has a singlet ground state with an excitation gap ${Delta}/k_{rm B}=31$ K. High-field magnetization measurements for KCuCl$_3$ have been performed in static magnetic fields of up to 30 T and in pulsed magnetic fields of up to 60 T. The entire magnetization curve including the saturation region was obtained at $T=1.3$ K. From the analysis of the magnetization curve, it was found that the exchange parameters determined from the dispersion relations of the magnetic excitations should be reduced, which suggests the importance of the renormalization effect in the magnetic excitations. The field-induced magnetic ordering accompanied by the cusplike minimum of the magnetization was observed as in the isomorphous compound TlCuCl$_3$. The phase boundary was almost independent of the field direction, and is represented by the power law. These results are consistent with the magnon Bose-Einstein condensation picture for field-induced magnetic ordering.
We present high-resolution measurements of the thermal expansion and the magnetostriction of TlCuCl$_{3}$ which shows field-induced antiferromagnetic order. We find pronounced anomalies in the field and temperature dependence of different directions of the lattice signaling a large magnetoelastic coupling. The phase boundary is extremely sensitive to pressure, e.g. the transition field would change by about +/- 185$%/GPa under uniaxial pressure applied along certain directions. This drastic effect can unambiguously be traced back to changes of the intradimer coupling under uniaxial pressure. The interdimer couplings remain essentially unchanged under pressure, but strongly change when Tl is replaced by K.
90 - K. Goto , T. Osakabe , K. Kakurai 2007
KCuCl$_3$ is a three dimensionally coupled spin dimer system, which undergoes a pressure-induced quantum phase transition from a gapped ground state to an antiferromagnetic state at a critical pressure of $P_{rm c} simeq 8.2$ kbar. Magnetic excitations in KCuCl$_3$ at a hydrostatic pressure of 4.7 kbar have been investigated by conducting neutron inelastic scattering experiments using a newly designed cylindrical high-pressure clamp cell. A well-defined single excitation mode is observed. The softening of the excitation mode due to the applied pressure is clearly observed. From the analysis of the dispersion relations, it is found that an intradimer interaction decreases under hydrostatic pressure, while most interdimer interactions increase.
We investigate the effects of two electronic bands at the negative electronic compressibility (NEC) in a two-dimensional electron gas (2DEG). We use a simple homogeneous model with Coulombic interactions and first-order multi-band coupling to examine the role of effective mass and relative permittivity in relation to the critical carrier density, where compressibility turns negative. We demonstrate that the population of a second band, along with the presence of inter-band coupling, can dramatically change the cross-over carrier density. Given the difficulty in determining and confirming multi-band electronic systems, this model provides a potential method for identifying multi-band electronic systems using precise bulk electronic properties measurements. To help illustrate this method, we apply our results to the observed NEC in the 2D electron gas at the interface of LaAlO$_3$/SrTiO$_3$ (LAO/STO) and determine that, for the known parameters of LAO/STO, the system is likely a realization of a two-band 2D electron gas. Furthermore, we provide general limits on the inter-band coupling with respect to the electronic band population.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا