Do you want to publish a course? Click here

Vibrational-ground-state zero-width resonances for laser filtration: An extended semiclassical analysis

68   0   0.0 ( 0 )
 Added by Osman Atabek OA
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

A semiclassical model supporting the destructive interference interpretation of zero-width resonances (ZWR) is extended to wavelengths inducing c_minus-type curve crossing situations in Na2 strong field dissociation. This opens the possibility to get critical couples of wavelengths lambda and field intensities I to reach ZWRs associated with the ground vibrationless level v = 0, that, contrary to other vibrational states (v > 0), is not attainable for the commonly referred c+-type crossings. The morphology of such ZWRs in the laser (I; lambda) parameter plane and their usefulness in filtration strategies aiming at molecular cooling down to the ground v = 0 state are examined within the frame of an adiabatic transport scheme.



rate research

Read More

In molecular photodissociation, some specific combinations of laser parameters (wavelength and intensity) lead to unexpected Zero-Width Resonances (ZWR), with in principle infinite lifetimes. Their interest in inducing basic quenching mechanisms have recently been devised in the laser control of vibrational cooling through filtration strategies [O. Atabek et al., Phys. Rev. A87, 031403(R) (2013)]. A full quantum adiabatic control theory based on the adiabatic Floquet Hamiltonian is developed to show how a laser pulse could be envelop-shaped and frequency-chirped so as to protect a given initial vibrational state against dissociation, taking advantage from its continuous transport on the corresponding ZWR, all along the pulse duration. As compared with previous control scenarios actually suffering from non-adiabatic contamination, drastically different and much more efficient filtration goals are achieved. A semiclassical analysis helps in finding and interpreting a complete map of ZWRs in the laser parameter plane. In addition, the choice of a given ZWR path, among the complete series identified by the semiclassical approach, amounts to be crucial for the cooling scheme, targeting a single vibrational state population left at the end of the pulse, while all others have almost completely decayed. The illustrative example, offering the potentiality to be transposed to other diatomics, is Na2 prepared by photoassociation in vibrationally hot but translationally and rotationally cold states.
200 - F. Lang , K. Winkler , C. Strauss 2008
We report here on the production of an ultracold gas of tightly bound Rb2 molecules in the ro-vibrational triplet ground state, close to quantum degeneracy. This is achieved by optically transferring weakly bound Rb2 molecules to the absolute lowest level of the ground triplet potential with a transfer efficiency of about 90%. The transfer takes place in a 3D optical lattice which traps a sizeable fraction of the tightly bound molecules with a lifetime exceeding 200 ms.
We propose a method for building a squeezed vacuum state laser with zero diffusion, which results from the introduction of the reservoir engineering technique into the laser theory. As well as the reservoir engineering, our squeezed vacuum laser demands the construction of an effective atom-field interaction. And by building an isomorphism between the cavity field operators in the effective and the Jaynes-Cummings Hamiltonians, we derive the equations of our effective laser directly from the conventional laser theory. Our method, which is less susceptible to errors than reservoir engineering, can be extended for the construction of other nonclassical state lasers, and our squeezed vacuum laser can contribute to the newly emerging field of gravitational interferometry.
We demonstrate a Fock-state filter which is capable of preferentially blocking single photons over photon pairs. The large conditional nonlinearities are based on higher-order quantum interference, using linear optics, an ancilla photon, and measurement. We demonstrate that the filter acts coherently by using it to convert unentangled photon pairs to a path-entangled state. We quantify the degree of entanglement by transforming the path information to polarisation information, applying quantum state tomography we measure a tangle of T=(20+/-9)%.
The interaction between superconducting qubits and one-dimensional microwave transmission lines has been studied experimentally and theoretically in the past two decades. In this work, we investigate the spontaneous emission of an initially excited artificial atom which is capacitively coupled to a semi-infinite transmission line, shorted at one end. This configuration can be viewed as an atom in front of a mirror. The distance between the atom and the mirror introduces a time-delay in the system, which we take into account fully. When the delay time equals an integer number of atom oscillation periods, the atom converges into a dark state after an initial decay period. The dark state is an effect of destructive interference between the reflected part of the field and the part directly emitted by the atom. Based on circuit quantization, we derive linearized equations of motion for the system and use these for a semiclassical analysis of the transient dynamics. We also make a rigorous connection to the quantum optics system-reservoir approach and compare these two methods to describe the dynamics. We find that both approaches are equivalent for transmission lines with a low characteristic impedance, while they differ when this impedance is higher than the typical impedance of the superconducting artificial atom.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا