Do you want to publish a course? Click here

A semiclassical analysis of dark state transient dynamics in waveguide circuit QED

70   0   0.0 ( 0 )
 Added by Emely Wiegand
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The interaction between superconducting qubits and one-dimensional microwave transmission lines has been studied experimentally and theoretically in the past two decades. In this work, we investigate the spontaneous emission of an initially excited artificial atom which is capacitively coupled to a semi-infinite transmission line, shorted at one end. This configuration can be viewed as an atom in front of a mirror. The distance between the atom and the mirror introduces a time-delay in the system, which we take into account fully. When the delay time equals an integer number of atom oscillation periods, the atom converges into a dark state after an initial decay period. The dark state is an effect of destructive interference between the reflected part of the field and the part directly emitted by the atom. Based on circuit quantization, we derive linearized equations of motion for the system and use these for a semiclassical analysis of the transient dynamics. We also make a rigorous connection to the quantum optics system-reservoir approach and compare these two methods to describe the dynamics. We find that both approaches are equivalent for transmission lines with a low characteristic impedance, while they differ when this impedance is higher than the typical impedance of the superconducting artificial atom.



rate research

Read More

We discuss the properties of bound states in finite-bandwidth waveguide QED beyond the Rotating Wave Approximation or excitation number conserving light-matter coupling models. Therefore, we extend the emph{standard} calculations to a broader range of light-matter strengths, in particular, in the so-called ultrastrong coupling regime. We do this using the Polaron technique. Our main results are as follows. We compute the spontaneous emission rate, which is renormalized as compared to the Fermi Golden Rule formula. We generalise the existence criteria for bound states, their properties and their role in the qubits thermalization. We discuss effective spin-spin interactions through both vacuum fluctuations and bound states. Finally, we sketch a perfect state-transfer protocol among distant emitters.
We develop an approach to light-matter coupling in waveguide QED based upon scattering amplitudes evaluated via Dyson series. For optical states containing more than single photons, terms in this series become increasingly complex and we provide a diagrammatic recipe for their evaluation, which is capable of yielding analytic results. Our method fully specifies a combined emitter-optical state that permits investigation of light-matter entanglement generation protocols. We use our expressions to study two-photon scattering from a $Lambda$-system and find that the pole structure of the transition amplitude is dramatically altered as the two ground states are tuned from degeneracy.
We present an efficient method to generate a Greenberger-Horne-Zeilinger (GHZ) entangled state of three cat-state qubits (cqubits) via circuit QED. The GHZ state is prepared with three microwave cavities coupled to a superconducting transmon qutrit. Because the qutrit remains in the ground state during the operation, decoherence caused by the energy relaxation and dephasing of the qutrit is greatly suppressed. The GHZ state is created deterministically because no measurement is involved. Numerical simulations show that high-fidelity generation of a three-cqubit GHZ state is feasible with present circuit QED technology. This proposal can be easily extended to create a $N$-cqubit GHZ state ($Ngeq 3$), with $N$ microwave or optical cavities coupled to a natural or artificial three-level atom.
93 - Zeyang Liao , M. Al-Amri , 2017
In the waveguide quantum electrodynamics (QED) system, emitter separation plays an important role for its functionality. Here, we present a method to measure the deep-subwavelength emitter separation in a waveguide-QED system. In this method, we can also determine the number of emitters within one diffraction-limited spot. In addition, we also show that ultrasmall emitter separation change can be detected in this system which may then be used as a waveguide-QED-based sensor to measure tiny local temperature/strain variation.
159 - A. Frisk Kockum , L. Tornberg , 2012
We analyze the backaction of homodyne detection and photodetection on superconducting qubits in circuit quantum electrodynamics. Although both measurement schemes give rise to backaction in the form of stochastic phase rotations, which leads to dephasing, we show that this can be perfectly undone provided that the measurement signal is fully accounted for. This result improves upon that of Phys. Rev. A, 82, 012329 (2010), showing that the method suggested can be made to realize a perfect two-qubit parity measurement. We propose a benchmarking experiment on a single qubit to demonstrate the method using homodyne detection. By analyzing the limited measurement efficiency of the detector and bandwidth of the amplifier, we show that the parameter values necessary to see the effect are within the limits of existing technology.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا