No Arabic abstract
In many smart infrastructure applications flexibility in achieving sustainability goals can be gained by engaging end-users. However, these users often have heterogeneous preferences that are unknown to the decision-maker tasked with improving operational efficiency. Modeling user interaction as a continuous game between non-cooperative players, we propose a robust parametric utility learning framework that employs constrained feasible generalized least squares estimation with heteroskedastic inference. To improve forecasting performance, we extend the robust utility learning scheme by employing bootstrapping with bagging, bumping, and gradient boosting ensemble methods. Moreover, we estimate the noise covariance which provides approximated correlations between players which we leverage to develop a novel correlated utility learning framework. We apply the proposed methods both to a toy example arising from Bertrand-Nash competition between two firms as well as to data from a social game experiment designed to encourage energy efficient behavior amongst smart building occupants. Using occupant voting data for shared resources such as lighting, we simulate the game defined by the estimated utility functions to demonstrate the performance of the proposed methods.
We study the problem of learning the objective functions or constraints of a multiobjective decision making model, based on a set of sequentially arrived decisions. In particular, these decisions might not be exact and possibly carry measurement noise or are generated with the bounded rationality of decision makers. In this paper, we propose a general online learning framework to deal with this learning problem using inverse multiobjective optimization. More precisely, we develop two online learning algorithms with implicit update rules which can handle noisy data. Numerical results show that both algorithms can learn the parameters with great accuracy and are robust to noise.
In this paper, we consider a multistage expected utility maximization problem where the decision makers utility function at each stage depends on historical data and the information on the true utility function is incomplete. To mitigate the risk arising from ambiguity of the true utility, we propose a maximin robust model where the optimal policy is based on the worst sequence of utility functions from an ambiguity set constructed with partially available information about the decision makers preferences. We then show that the multistage maximin problem is time consistent when the utility functions are state-dependent and demonstrate with a counter example that the time consistency may not be retained when the utility functions are state-independent. With the time consistency, we show the maximin problem can be solved by a recursive formula whereby a one-stage maximin problem is solved at each stage beginning from the last stage. Moreover, we propose two approaches to construct the ambiguity set: a pairwise comparison approach and a $zeta$-ball approach where a ball of utility functions centered at a nominal utility function under $zeta$-metric is considered. To overcome the difficulty arising from solving the infinite dimensional optimization problem in computation of the worst-case expected utility value, we propose piecewise linear approximation of the utility functions and derive error bound for the approximation under moderate conditions. Finally we develop a scenario tree-based computational scheme for solving the multistage preference robust optimization model and report some preliminary numerical results.
Solving l1 regularized optimization problems is common in the fields of computational biology, signal processing and machine learning. Such l1 regularization is utilized to find sparse minimizers of convex functions. A well-known example is the LASSO problem, where the l1 norm regularizes a quadratic function. A multilevel framework is presented for solving such l1 regularized sparse optimization problems efficiently. We take advantage of the expected sparseness of the solution, and create a hierarchy of problems of similar type, which is traversed in order to accelerate the optimization process. This framework is applied for solving two problems: (1) the sparse inverse covariance estimation problem, and (2) l1-regularized logistic regression. In the first problem, the inverse of an unknown covariance matrix of a multivariate normal distribution is estimated, under the assumption that it is sparse. To this end, an l1 regularized log-determinant optimization problem needs to be solved. This task is challenging especially for large-scale datasets, due to time and memory limitations. In the second problem, the l1-regularization is added to the logistic regression classification objective to reduce overfitting to the data and obtain a sparse model. Numerical experiments demonstrate the efficiency of the multilevel framework in accelerating existing iterative solvers for both of these problems.
In this paper, a robust optimization framework is developed to train shallow neural networks based on reachability analysis of neural networks. To characterize noises of input data, the input training data is disturbed in the description of interval sets. Interval-based reachability analysis is then performed for the hidden layer. With the reachability analysis results, a robust optimization training method is developed in the framework of robust least-square problems. Then, the developed robust least-square problem is relaxed to a semidefinite programming problem. It has been shown that the developed robust learning method can provide better robustness against perturbations at the price of loss of training accuracy to some extent. At last, the proposed method is evaluated on a robot arm model learning example.
Benchmarks in the utility function have various interpretations, including performance guarantees and risk constraints in fund contracts and reference levels in cumulative prospect theory. In most literature, benchmarks are a deterministic constant or a fraction of the underlying wealth; as such, the utility is still a univariate function of the wealth. In this paper, we propose a framework of multivariate utility optimization with general benchmark variables, which include stochastic reference levels as typical examples. The utility is state-dependent and the objective is no longer distribution-invariant. We provide the optimal solution(s) and fully investigate the issues of well-posedness, feasibility, finiteness and attainability. The discussion does not require many classic conditions and assumptions, e.g., the Lagrange multiplier always exists. Moreover, several surprising phenomena and technical difficulties may appear: (i) non-uniqueness of the optimal solutions, (ii) various reasons for non-existence of the Lagrangian multiplier and corresponding results on the optimal solution, (iii) measurability issues of the concavification of a multivariate utility and the selection of the optimal solutions, and (iv) existence of an optimal solution not decreasing with respect to the pricing kernel. These issues are thoroughly addressed, rigorously proved, completely summarized and insightfully visualized. As an application, the framework is adopted to model and solve a constraint utility optimization problem with state-dependent performance and risk benchmarks.