Do you want to publish a course? Click here

Robust Optimization Framework for Training Shallow Neural Networks Using Reachability Method

162   0   0.0 ( 0 )
 Added by Weiming Xiang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In this paper, a robust optimization framework is developed to train shallow neural networks based on reachability analysis of neural networks. To characterize noises of input data, the input training data is disturbed in the description of interval sets. Interval-based reachability analysis is then performed for the hidden layer. With the reachability analysis results, a robust optimization training method is developed in the framework of robust least-square problems. Then, the developed robust least-square problem is relaxed to a semidefinite programming problem. It has been shown that the developed robust learning method can provide better robustness against perturbations at the price of loss of training accuracy to some extent. At last, the proposed method is evaluated on a robot arm model learning example.



rate research

Read More

We present the remote stochastic gradient (RSG) method, which computes the gradients at configurable remote observation points, in order to improve the convergence rate and suppress gradient noise at the same time for different curvatures. RSG is further combined with adaptive methods to construct ARSG for acceleration. The method is efficient in computation and memory, and is straightforward to implement. We analyze the convergence properties by modeling the training process as a dynamic system, which provides a guideline to select the configurable observation factor without grid search. ARSG yields $O(1/sqrt{T})$ convergence rate in non-convex settings, that can be further improved to $O(log(T)/T)$ in strongly convex settings. Numerical experiments demonstrate that ARSG achieves both faster convergence and better generalization, compared with popular adaptive methods, such as ADAM, NADAM, AMSGRAD, and RANGER for the tested problems. In particular, for training ResNet-50 on ImageNet, ARSG outperforms ADAM in convergence speed and meanwhile it surpasses SGD in generalization.
139 - Kaidi Xu , Sijia Liu , Pin-Yu Chen 2020
Graph Neural Networks (GNNs) have made significant advances on several fundamental inference tasks. As a result, there is a surge of interest in using these models for making potentially important decisions in high-regret applications. However, despite GNNs impressive performance, it has been observed that carefully crafted perturbations on graph structures (or nodes attributes) lead them to make wrong predictions. Presence of these adversarial examples raises serious security concerns. Most of the existing robust GNN design/training methods are only applicable to white-box settings where model parameters are known and gradient based methods can be used by performing convex relaxation of the discrete graph domain. More importantly, these methods are not efficient and scalable which make them infeasible in time sensitive tasks and massive graph datasets. To overcome these limitations, we propose a general framework which leverages the greedy search algorithms and zeroth-order methods to obtain robust GNNs in a generic and an efficient manner. On several applications, we show that the proposed techniques are significantly less computationally expensive and, in some cases, more robust than the state-of-the-art methods making them suitable to large-scale problems which were out of the reach of traditional robust training methods.
We analyze the convergence rate of gradient flows on objective functions induced by Dropout and Dropconnect, when applying them to shallow linear Neural Networks (NNs) - which can also be viewed as doing matrix factorization using a particular regularizer. Dropout algorithms such as these are thus regularization techniques that use 0,1-valued random variables to filter weights during training in order to avoid coadaptation of features. By leveraging a recent result on nonconvex optimization and conducting a careful analysis of the set of minimizers as well as the Hessian of the loss function, we are able to obtain (i) a local convergence proof of the gradient flow and (ii) a bound on the convergence rate that depends on the data, the dropout probability, and the width of the NN. Finally, we compare this theoretical bound to numerical simulations, which are in qualitative agreement with the convergence bound and match it when starting sufficiently close to a minimizer.
Even though deep learning has shown unmatched performance on various tasks, neural networks have been shown to be vulnerable to small adversarial perturbations of the input that lead to significant performance degradation. In this work we extend the idea of adding white Gaussian noise to the network weights and activations during adversarial training (PNI) to the injection of colored noise for defense against common white-box and black-box attacks. We show that our approach outperforms PNI and various previous approaches in terms of adversarial accuracy on CIFAR-10 and CIFAR-100 datasets. In addition, we provide an extensive ablation study of the proposed method justifying the chosen configurations.
Abstracting neural networks with constraints they impose on their inputs and outputs can be very useful in the analysis of neural network classifiers and to derive optimization-based algorithms for certification of stability and robustness of feedback systems involving neural networks. In this paper, we propose a convex program, in the form of a Linear Matrix Inequality (LMI), to certify incremental quadratic constraints on the map of neural networks over a region of interest. These certificates can capture several useful properties such as (local) Lipschitz continuity, one-sided Lipschitz continuity, invertibility, and contraction. We illustrate the utility of our approach in two different settings. First, we develop a semidefinite program to compute guaranteed and sharp upper bounds on the local Lipschitz constant of neural networks and illustrate the results on random networks as well as networks trained on MNIST. Second, we consider a linear time-invariant system in feedback with an approximate model predictive controller parameterized by a neural network. We then turn the stability analysis into a semidefinite feasibility program and estimate an ellipsoidal invariant set for the closed-loop system.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا