No Arabic abstract
In this article we explore an algorithm for diffeomorphic random sampling of nonuniform probability distributions on Riemannian manifolds. The algorithm is based on optimal information transport (OIT)---an analogue of optimal mass transport (OMT). Our framework uses the deep geometric connections between the Fisher-Rao metric on the space of probability densities and the right-invariant information metric on the group of diffeomorphisms. The resulting sampling algorithm is a promising alternative to OMT, in particular as our formulation is semi-explicit, free of the nonlinear Monge--Ampere equation. Compared to Markov Chain Monte Carlo methods, we expect our algorithm to stand up well when a large number of samples from a low dimensional nonuniform distribution is needed.
We address the following problem: given two smooth densities on a manifold, find an optimal diffeomorphism that transforms one density into the other. Our framework builds on connections between the Fisher-Rao information metric on the space of probability densities and right-invariant metrics on the infinite-dimensional manifold of diffeomorphisms. This optimal information transport, and modifications thereof, allows us to construct numerical algorithms for density matching. The algorithms are inherently more efficient than those based on optimal mass transport or diffeomorphic registration. Our methods have applications in medical image registration, texture mapping, image morphing, non-uniform random sampling, and mesh adaptivity. Some of these applications are illustrated in examples.
Image registration has played an important role in image processing problems, especially in medical imaging applications. It is well known that when the deformation is large, many variational models cannot ensure diffeomorphism. In this paper, we propose a new registration model based on an optimal control relaxation constraint for large deformation images, which can theoretically guarantee that the registration mapping is diffeomorphic. We present an analysis of optimal control relaxation for indirectly seeking the diffeomorphic transformation of Jacobian determinant equation and its registration applications, including the construction of diffeomorphic transformation as a special space. We also provide an existence result for the control increment optimization problem in the proposed diffeomorphic image registration model with an optimal control relaxation. Furthermore, a fast iterative scheme based on the augmented Lagrangian multipliers method (ALMM) is analyzed to solve the control increment optimization problem, and a convergence analysis is followed. Finally, a grid unfolding indicator is given, and a robust solving algorithm for using the deformation correction and backtrack strategy is proposed to guarantee that the solution is diffeomorphic. Numerical experiments show that the registration model we proposed can not only get a diffeomorphic mapping when the deformation is large, but also achieves the state-of-the-art performance in quantitative evaluations in comparing with other classical models.
We introduce a simple and efficient algorithm for stochastic linear bandits with finitely many actions that is asymptotically optimal and (nearly) worst-case optimal in finite time. The approach is based on the frequentist information-directed sampling (IDS) framework, with a surrogate for the information gain that is informed by the optimization problem that defines the asymptotic lower bound. Our analysis sheds light on how IDS balances the trade-off between regret and information and uncovers a surprising connection between the recently proposed primal-dual methods and the IDS algorithm. We demonstrate empirically that IDS is competitive with UCB in finite-time, and can be significantly better in the asymptotic regime.
Minimization of a stochastic cost function is commonly used for approximate sampling in high-dimensional Bayesian inverse problems with Gaussian prior distributions and multimodal posterior distributions. The density of the samples generated by minimization is not the desired target density, unless the observation operator is linear, but the distribution of samples is useful as a proposal density for importance sampling or for Markov chain Monte Carlo methods. In this paper, we focus on applications to sampling from multimodal posterior distributions in high dimensions. We first show that sampling from multimodal distributions is improved by computing all critical points instead of only minimizers of the objective function. For applications to high-dimensional geoscience problems, we demonstrate an efficient approximate weighting that uses a low-rank Gauss-Newton approximation of the determinant of the Jacobian. The method is applied to two toy problems with known posterior distributions and a Darcy flow problem with multiple modes in the posterior.
A new framework for asset price dynamics is introduced in which the concept of noisy information about future cash flows is used to derive the price processes. In this framework an asset is defined by its cash-flow structure. Each cash flow is modelled by a random variable that can be expressed as a function of a collection of independent random variables called market factors. With each such X-factor we associate a market information process, the values of which are accessible to market agents. Each information process is a sum of two terms; one contains true information about the value of the market factor; the other represents noise. The noise term is modelled by an independent Brownian bridge. The market filtration is assumed to be that generated by the aggregate of the independent information processes. The price of an asset is given by the expectation of the discounted cash flows in the risk-neutral measure, conditional on the information provided by the market filtration. When the cash flows are the dividend payments associated with equities, an explicit model is obtained for the share-price, and the prices of options on dividend-paying assets are derived. Remarkably, the resulting formula for the price of a European call option is of the Black-Scholes-Merton type. The information-based framework also generates a natural explanation for the origin of stochastic volatility.