No Arabic abstract
In this paper, the partially party-time ($PT$) symmetric nonlocal Davey-Stewartson (DS) equations with respect to $x$ is called $x$-nonlocal DS equations, while a fully $PT$ symmetric nonlocal DSII equation is called nonlocal DSII equation. Three kinds of solutions, namely breather, rational and semi-rational solutions for these nonlocal DS equations are derived by employing the bilinear method. For the $x$-nonlocal DS equations, the usual ($2+1$)-dimensional breathers are periodic in $x$ direction and localized in $y$ direction. Nonsingular rational solutions are lumps, and semi-rational solutions are composed of lumps, breathers and periodic line waves. For the nonlocal DSII equation, line breathers are periodic in both $x$ and $y$ directions with parallels in profile, but localized in time. Nonsingular rational solutions are ($2+1$)-dimensional line rogue waves, which arise from a constant background and disappear into the same constant background, and this process only lasts for a short period of time. Semi-rational solutions describe interactions of line rogue waves and periodic line waves.
General dark solitons and mixed solutions consisting of dark solitons and breathers for the third-type Davey-Stewartson (DS-III) equation are derived by employing the bilinear method. By introducing the two differential operators, semi-rational solutions consisting of rogue waves, breathers and solitons are generated. These semi-rational solutions are given in terms of determinants whose matrix elements have simple algebraic expressions. Under suitable parametric conditions, we derive general rogue wave solutions expressed in terms of rational functions. It is shown that the fundamental (simplest) rogue waves are line rogue waves. It is also shown that the multi-rogue waves describe interactions of several fundamental rogue waves, which would generate interesting curvy wave patterns. The higher order rogue waves originate from a localized lump and retreat back to it. Several types of hybrid solutions composed of rogue waves, breathers and solitons have also been illustrated. Specifically, these semi-rational solutions have a new phenomenon: lumps form on dark solitons and gradual separation from the dark solitons is observed.
The (2+1)-dimensional [(2+1)d] Fokas system is a natural and simple extension of the nonlinear Schrodinger equation. (see eq. (2) in A. S. Fokas, Inverse Probl. 10 (1994) L19-L22). In this letter, we introduce its PT -symmetric version, which is called the (2 + 1)d nonlocal Fokas system. The N-soliton solutions for this system are obtained by using the Hirota bilinear method whereas the semi-rational solutions are generated by taking the long-wave limit of a part of exponential functions in the general expression of the N-soliton solution. Three kinds of semi-rational solutions, namely (1) a hybrid of rogue waves and periodic line waves, (2) a hybrid of lump and breather solutions, and (3) a hybrid of lump, breather, and periodic line waves are put forward and their rather complicated dynamics is revealed.
Recently, an integrable system of coupled (2+1)-dimensional nonlinear Schrodinger (NLS) equations was introduced by Fokas (eq. (18) in Nonlinearity 29}, 319324 (2016)). Following this pattern, two integrable equations [eqs.2 and 3] with specific parity-time symmetry are introduced here, under different reduction conditions. For eq. 2, two kinds of periodic solutions are obtained analytically by means of the Hirotas bilinear method. In the long-wave limit, the two periodic solutions go over into rogue waves (RWs) and semi-rational solutions, respectively. The RWs have a line shape, while the semi-rational states represent RWs built on top of the background of periodic line waves. Similarly, semi-rational solutions consisting of a line RW and line breather are derived. For eq. 3, three kinds of analytical solutions,textit{viz}., breathers, lumps and semi-rational solutions, representing lumps, periodic line waves and breathers are obtained, using the Hirota method. Their dynamics are analyzed and demonstrated by means of three-dimensional plots. It is also worthy to note that eq. 2 can reduce to a (1+1)-dimensional textquotedblleft reverse-space nonlocal NLS equation by means of a certain transformation, Lastly, main differences between solutions of eqs.2 and 3 are summarized.
We compute the Lie symmetry algebra of the generalized Davey-Stewartson (GDS) equations and show that under certain conditions imposed on parameters in the system it is infinite-dimensional and isomorphic to that of the standard integrable Davey-Stewartson equations which is known to have a very specific Kac-Moody-Virasoro loop algebra structure. We discuss how the Virasoro part of this symmetry algebra can be used to construct new solutions, which are of vital importance in demonstrating existence of blow-up profiles, from known ones using Lie subgroup of transformations generated by three-dimensional subalgebras, namely $Sl(2,mathbb{R})$. We further discuss integrability aspects of GDS equations.
The integrable Davey-Stewartson system is a linear combination of the two elementary flows that commute: $mathrm{i} q_{t_1} + q_{xx} + 2qpartial_y^{-1}partial_x (|q|^2) =0$ and $mathrm{i} q_{t_2} + q_{yy} + 2qpartial_x^{-1}partial_y (|q|^2) =0$. In the literature, each elementary Davey-Stewartson flow is often called the Fokas system because it was studied by Fokas in the early 1990s. In fact, the integrability of the Davey-Stewartson system dates back to the work of Ablowitz and Haberman in 1975; the elementary Davey-Stewartson flows, as well as another integrable $(2+1)$-dimensional nonlinear Schrodinger equation $mathrm{i} q_{t} + q_{xy} + 2 qpartial_y^{-1}partial_x (|q|^2) =0$ proposed by Calogero and Degasperis in 1976, appeared explicitly in Zakharovs article published in 1980. By applying a linear change of the independent variables, an elementary Davey-Stewartson flow can be identified with a $(2+1)$-dimensional generalization of the integrable long wave-short wave interaction model, called the Yajima-Oikawa system: $mathrm{i} q_{t} + q_{xx} + u q=0$, $u_t + c u_y = 2(|q|^2)_x$. In this paper, we propose a new integrable semi-discretization (discretization of one of the two spatial variables, say $x$) of the Davey-Stewartson system by constructing its Lax-pair representation; the two elementary flows in the semi-discrete case indeed commute. By applying a linear change of the continuous independent variables to an elementary flow, we also obtain an integrable semi-discretization of the $(2+1)$-dimensional Yajima-Oikawa system.