No Arabic abstract
We investigate the possibility to suppress interactions between a finite dimensional system and an infinite dimensional environment through a fast sequence of unitary kicks on the finite dimensional system. This method, called dynamical decoupling, is known to work for bounded interactions, but physical environments such as bosonic heat baths are usually modelled with unbounded interactions, whence here we initiate a systematic study of dynamical decoupling for unbounded operators. We develop a sufficient decoupling criterion for arbitrary Hamiltonians and a necessary decoupling criterion for semibounded Hamiltonians. We give examples for unbounded Hamiltonians where decoupling works and the limiting evolution as well as the convergence speed can be explicitly computed. We show that decoupling does not always work for unbounded interactions and provide both physically and mathematically motivated examples.
The validity of optimized dynamical decoupling (DD) is extended to analytically time dependent Hamiltonians. As long as an expansion in time is possible the time dependence of the initial Hamiltonian does not affect the efficiency of optimized dynamical decoupling (UDD, Uhrig DD). This extension provides the analytic basis for (i) applying UDD to effective Hamiltonians in time dependent reference frames, for instance in the interaction picture of fast modes and for (ii) its application in hierarchical DD schemes with $pi$ pulses about two perpendicular axes in spin space. to suppress general decoherence, i.e., longitudinal relaxation and dephasing.
It is shown that if the C operator for a PT-symmetric Hamiltonian with simple eigenvalues is not unique, then it is unbounded. Apart from the special cases of finite-matrix Hamiltonians and Hamiltonians generated by differential expressions with PT-symmetric point interactions, the usual situation is that the C operator is unbounded. The fact that the C operator is unbounded is significant because, while there is a formal equivalence between a PT-symmetric Hamiltonian and a conventionally Hermitian Hamiltonian in the sense that the two Hamiltonians are isospectral, the Hilbert spaces are inequivalent. This is so because the mapping from one Hilbert space to the other is unbounded. This shows that PT-symmetric quantum theories are mathematically distinct from conventional Hermitian quantum theories.
It is commonly claimed that only Hamiltonians with a spectrum unbounded both above and below can give purely exponential decay. Because such Hamiltonians have no ground state, they are considered unphysical. Here we show that Hamiltonians which are bounded below can give purely exponential decay. This is possible when, instead of looking at the global survival probability, one considers a subsystem only. We conclude that purely exponential decay might not be as unphysical as previously thought.
The thermal equilibrium properties of physical systems can be described using Gibbs states. It is therefore of great interest to know when such states allow for an easy description. In particular, this is the case if correlations between distant regions are small. In this work, we consider 1D quantum spin systems with local, finite-range, translation-invariant interactions at any temperature. In this setting, we show that Gibbs states satisfy uniform exponential decay of correlations and, moreover, the mutual information between two regions decays exponentially with their distance, irrespective of the temperature. The methods we use are based on the Belavkin-Staszewski relative entropy and on techniques developed by Araki. Moreover, we find that the Gibbs states of the systems we consider are superexponentially close to saturating the data-processing inequality for the Belavkin-Staszewski relative entropy.
We propose a scheme for mixed dynamical decoupling (MDD), where we combine continuous dynamical decoupling with robust sequences of phased pulses. Specifically, we use two fields for decoupling, where the first continuous driving field creates dressed states that are robust to environmental noise. Then, a second field implements a robust sequence of phased pulses to perform