No Arabic abstract
We study the effect of critical pairing fluctuations on the electronic properties in the normal state of a clean superconductor in three dimensions. Using a functional renormalization group approach to take the non-Gaussian nature of critical fluctuations into account, we show microscopically that in the BCS regime, where the inverse coherence length is much smaller than the Fermi wavevector, critical pairing fluctuations give rise to a non-analytic contribution to the quasi-particle damping of order $ T_c sqrt{Gi} ln ( 80 / Gi )$, where the Ginzburg-Levanyuk number $Gi$ is a dimensionless measure for the width of the critical region. As a consequence, there is a temperature window above $T_c$ where the quasiparticle damping due to critical pairing fluctuations can be larger than the usual $T^2$-Fermi liquid damping due to non-critical scattering processes. On the other hand, in the strong coupling regime where $Gi$ is of order unity, we find that the quasiparticle damping due to critical pairing fluctuations is proportional to the temperature. Moreover, we show that in the vicinity of the critical temperature $T_c$ the electronic density of states exhibits a fluctuation-induced pseudogap. We also use functional renormalization group methods to derive and classify various types of processes induced by the pairing interaction in Fermi systems close to the superconducting instability.
Evidence that the pseudogap (PG) in a near-optimally doped Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$ sample destroys the BCS logarithmic pairing instability [1] raises again the question of the role of the PG in the high-temperature superconducting cuprates [2]. The elimination of the BCS instability is consistent with the view that the PG competes with superconductivity. However, as noted in [1], the onset of superconductivity with a $T_c sim 90$ K suggests an alternative scenario in which the PG reflects the formation of short range pairing correlations. Here, we report results obtained from a dynamic cluster quantum Monte Carlo approximation (DCA) for a 2D Hubbard model and conclude that (1) the PG, like the superconductivity, arises due to short-range antiferromagnetic correlations and (2) contrary to the usual case in which the pairing instability arises from the Cooper instability, here, the strength of the spin-fluctuations increases as the temperature decreases leading to the pairing instability.
The pseudogap is one of the most pervasive phenomena of high temperature superconductors. It is attributed either to incoherent Cooper pairing setting in above the superconducting transition temperature Tc, or to a hidden order parameter competing with superconductivity. Here we use inelastic neutron scattering from underdoped YBa(2)Cu(3)O(6.6) to show that the dispersion relations of spin excitations in the superconducting and pseudogap states are qualitatively different. Specifically, the extensively studied hour glass shape of the magnetic dispersions in the superconducting state is no longer discernible in the pseudogap state and we observe an unusual vertical dispersion with pronounced in-plane anisotropy. The differences between superconducting and pseudogap states are thus more profound than generally believed, suggesting a competition between these two states. Whereas the high-energy excitations are common to both states and obey the symmetry of the copper oxide square lattice, the low-energy excitations in the pseudogap state may be indicative of collective fluctuations towards a state with broken orientational symmetry predicted in theoretical work.
We present a detailed study of 75As NMR Knight shift and spin-lattice relaxation rate in the normal state of stoichiometric polycrystalline LiFeAs. Our analysis of the Korringa relation suggests that LiFeAs exhibits strong antiferromagnetic fluctuations, if transferred hyperfine coupling is a dominant interaction between 75As nuclei and Fe electronic spins, whereas for an on-site hyperfine coupling scenario, these are weaker, but still present to account for our experimental observations. Density-functional calculations of electric field gradient correctly reproduce the experimental values for both 75As and 7Li sites.
Superconductivity is a quantum phenomenon caused by bound pairs of electrons. In diverse families of strongly correlated electron systems, the electron pairs are not bound together by phonon exchange but instead by some other kind of bosonic fluctuations. In these systems, superconductivity is often found near a magnetic quantum critical point (QCP) where a magnetic phase vanishes in the zero-temperature limit. Moreover, the maximum of superconducting transition temperature Tc frequently locates near the magnetic QCP, suggesting that the proliferation of critical spin fluctuations emanating from the QCP plays an important role in Cooper pairing. In cuprate superconductors, however, the superconducting dome is usually separated from the antiferromagnetic phase and Tc attains its maximum value near the verge of enigmatic pseudogap state that appears below doping-dependent temperature T*. Thus a clue to the pairing mechanism resides in the pseudogap and associated anomalous transport properties. Recent experiments suggested a phase transition at T*, yet, most importantly, relevant fluctuations associated with the pseudogap have not been identified. Here we report on direct observations of enhanced nematic fluctuations in (Bi,Pb)2Sr2CaCu2O8+d by elastoresistance measurements, which couple to twofold in-plane electronic anisotropy, i.e. electronic nematicity. The nematic susceptibility shows Curie-Weiss-like temperature dependence above T*, and an anomaly at T* evidences a second-order transition with broken rotational symmetry. Near the pseudogap end point, where Tc is not far from its peak in the superconducting dome, nematic susceptibility becomes singular and divergent, indicating the presence of a nematic QCP. This signifies quantum critical fluctuations of a nematic order, which has emerging links to the high-Tc superconductivity and strange metallic behaviours in cuprates.
We report simultaneous hydrostatic pressure studies on the critical temperature $T_c$ and on the pseudogap temperature $T^*$ performed through resistivity measurements on an optimally doped high-$T_c$ oxide $Hg_{0.82}Re_{0.18}Ba_2Ca_2Cu_3O_{8+delta}$. The resistivity is measured as function of the temperature for several different applied pressure below 1GPa. We find that both $T_c$ and $T^*$ increases linearly with the pressure. This result demonstrate that the well known intrinsic pressure effect on $T_c$ is also present at $T^*$ and both temperatures are originated by the same superconducting mechanism.