Do you want to publish a course? Click here

The molecular gas in Luminous Infrared Galaxies I: CO lines, extreme physical conditions, and their drivers

236   0   0.0 ( 0 )
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report results from a large molecular line survey of Luminous Infrared Galaxies (L_{IR} >= 10^{11} L_sol) in the local Universe (z<=0.1), conducted during the last decade with the James Clerk Maxwell Telescope (JCMT) and the IRAM 30-m telescope. This work presents the CO and {13}CO line data for 36 galaxies, further augmented by multi-J total CO luminosities available for other IR-bright galaxies from the literature. This yields a sample of N=70 galaxies with the star-formation (SF) powered fraction of their IR luminosities spanning L_{IR} (10^{10}-2x10^{12}) L_sol and a wide range of morphologies. Simple comparisons of their available CO Spectral Line Energy Distributions (SLEDs) with local ones, as well as radiative transfer models discern a surprisingly wide range of average ISM conditions, with most of the surprises found in the high-excitation regime. These take the form of global CO SLEDs dominated by a very warm (T_{kin}>=100 K) and dense (n>=10^4 cm^{-3}) gas phase, involving galaxy-sized (~(few)x10^9 M_sol) gas mass reservoirs under conditions that would otherwise amount only ~1% of mass per typical SF molecular cloud in the Galaxy. Some of the highest excitation CO SLEDs are found in the so-called Ultra Luminous Infrared Galaxies and seem irreducible to ensembles of ordinary SF-powered regions. Highly supersonic turbulence and high cosmic ray (CR) energy densities rather than far-UV/optical photons or SNR-induced shocks from individual SF sites can globally warm the large amounts of dense gas found in these merger-driven starbursts and easily power their extraordinary CO line excitation.....



rate research

Read More

In this work we conclude the analysis of our CO line survey of Luminous Infrared Galaxies (LIRGs: L_{IR}>=10^{11}L_{sol}) in the local Universe (Paper,I), by focusing on the influence of their average ISM properties on the total molecular gas mass estimates via the so-called X_{co}=M(H_2)/L_{co,1-0} factor. One-phase radiative transfer models of the global CO Spectral Line Energy Distributions (SLEDs) yield an X_{co} distribution with: <X_{co}>sim(0.6+/-0.2) M_{sol}(K km s^{-1} pc^2)^{-1} over a significant range of average gas densities, temperatures and dynamical states. The latter emerges as the most important parameter in determining X_{co}, with unbound states yielding low values and self-gravitating states the highest ones. Nevertheless in many (U)LIRGs where available higher-J CO lines (J=3--2, 4--3, and/or J=6--5) or HCN line data from the literature allow a separate assessment of the gas mass at high densities (>=10^{4} cm^{-3}) rather than a simple one-phase analysis we find that {it near-Galactic X_{co} (3-6), M_sol,(K,km^{-1},pc^2)^{-1} values become possible.} We further show that in the highly turbulent molecular gas in ULIRGs a high-density component will be common and can be massive enough for its high X_{co} to dominate the average value for the entire galaxy. ......... ...this may have thus resulted to systematic underestimates of molecular gas mass in ULIRGs.
143 - N. Lu , Y. Zhao , C. K. Xu 2014
We present our initial results on the CO rotational spectral line energy distribution (SLED) of the $J$ to $J$$-$1 transitions from $J=4$ up to $13$ from Herschel SPIRE spectroscopic observations of 65 luminous infrared galaxies (LIRGs) in the Great Observatories All-Sky LIRG Survey (GOALS). The observed SLEDs change on average from one peaking at $J le 4$ to a broad distribution peaking around $J sim,$6$-$7 as the IRAS 60-to-100 um color, $C(60/100)$, increases. However, the ratios of a CO line luminosity to the total infrared luminosity, $L_{rm IR}$, show the smallest variation for $J$ around 6 or 7. This suggests that, for most LIRGs, ongoing star formation (SF) is also responsible for a warm gas component that emits CO lines primarily in the mid-$J$ regime ($5 lesssim J lesssim 10$). As a result, the logarithmic ratios of the CO line luminosity summed over CO (5$-$4), (6$-$5), (7$-$6), (8$-$7) and (10$-$9) transitions to $L_{rm IR}$, $log R_{rm midCO}$, remain largely independent of $C(60/100)$, and show a mean value of $-4.13$ ($equiv log R^{rm SF}_{rm midCO}$) and a sample standard deviation of only 0.10 for the SF-dominated galaxies. Including additional galaxies from the literature, we show, albeit with small number of cases, the possibility that galaxies, which bear powerful interstellar shocks unrelated to the current SF, and galaxies, in which an energetic active galactic nucleus contributes significantly to the bolometric luminosity, have their $R_{rm midCO}$ higher and lower than $R^{rm SF}_{rm midCO}$, respectively.
109 - Qian Jiao 2017
We present a statistical study on the [C I]($^{3} rm P_{1} rightarrow {rm ^3 P}_{0}$), [C I] ($^{3} rm P_{2} rightarrow {rm ^3 P}_{1}$) lines (hereafter [C I] (1$-$0) and [C I] (2$-$1), respectively) and the CO (1$-$0) line for a sample of (ultra)luminous infrared galaxies [(U)LIRGs]. We explore the correlations between the luminosities of CO (1$-$0) and [C I] lines, and find that $L_mathrm{CO(1-0)}$ correlates almost linearly with both $L_ mathrm{[CI](1-0)}$ and $L_mathrm{[CI](2-1)}$, suggesting that [C I] lines can trace total molecular gas mass at least for (U)LIRGs. We also investigate the dependence of $L_mathrm{[CI](1-0)}$/$L_mathrm{CO(1-0)}$, $L_mathrm{[CI](2-1)}$/$L_mathrm{CO(1-0)}$ and $L_mathrm{[CI](2-1)}$/$L_mathrm{[CI](1-0)}$ on the far-infrared color of 60-to-100 $mu$m, and find non-correlation, a weak correlation and a modest correlation, respectively. Under the assumption that these two carbon transitions are optically thin, we further calculate the [C I] line excitation temperatures, atomic carbon masses, and the mean [C I] line flux-to-H$_2$ mass conversion factors for our sample. The resulting $mathrm{H_2}$ masses using these [C I]-based conversion factors roughly agree with those derived from $L_mathrm{CO(1-0)}$ and CO-to-H$_2$ conversion factor.
64 - L.K. Hunt , A. Weiss , C. Henkel 2017
Studying the molecular component of the interstellar medium in metal-poor galaxies has been challenging because of the faintness of carbon monoxide emission, the most common proxy of H2. Here we present new detections of molecular gas at low metallicities, and assess the physical conditions in the gas through various CO transitions for 8 galaxies. For one, NGC 1140 (Z/Zsun ~ 0.3), two detections of 13CO isotopologues and atomic carbon, [CI](1-0), and an upper limit for HCN(1-0) are also reported. After correcting to a common beam size, we compared 12CO(2-1)/12CO(1-0) (R21) and 12CO(3-2)/12CO(1-0) (R31) line ratios of our sample with galaxies from the literature and find that only NGC 1140 shows extreme values (R21 ~ R31 ~ 2). Fitting physical models to the 12CO and 13CO emission in NGC 1140 suggests that the molecular gas is cool (kinetic temperature Tkin<=20 K), dense (H2 volume density nH2 >= $10^6$ cm$^{-3}$), with moderate CO column density (NCO ~ $10^{16}$ cm$^{-2}$) and low filling factor. Surprisingly, the [12CO]/[13CO] abundance ratio in NGC 1140 is very low (~ 8-20), lower even than the value of 24 found in the Galactic Center. The young age of the starburst in NGC 1140 precludes 13C enrichment from evolved intermediate-mass stars; instead we attribute the low ratio to charge-exchange reactions and fractionation, because of the enhanced efficiency of these processes in cool gas at moderate column densities. Fitting physical models to 12CO and [CI](1-0) emission in NGC 1140 gives an unusually low [12CO]/[12C] abundance ratio, suggesting that in this galaxy atomic carbon is at least 10 times more abundant than 12CO.
We probe the physical conditions in high redshift galaxies, specifically, the Damped Lyman-alpha Systems (DLAs) using neutral carbon (CI) fine structure lines and molecular hydrogen (H2). We report five new detections of CI and analyze the CI in an additional 2 DLAs with previously published data. We also present one new detection of H2 in a DLA. We present a new method of analysis that simultaneously constrains emph{both} the volume density and the temperature of the gas, as opposed to previous studies that a priori assumed a gas temperature. We use only the column density of CI measured in the fine structure states and the assumption of ionization equilibrium in order to constrain the physical conditions in the gas. We present a sample of 11 CI velocity components in 6 DLAs and compare their properties to those derived by the global CII* technique. The resulting median values for this sample are: <n(HI)> = 69 cm^{-3}, <T> = 50 K, and <log(P/k)> = 3.86 cm^{-3} K, with standard deviations, sigma_{n(HI)} = 134 cm^{-3}, sigma_T = 52 K, and sigma_{log(P/k)} = 3.68 cm^{-3} K. This can be compared with the integrated median values for the same DLAs : <n(HI)> = 2.8 cm^{-3}, <T> = 139 K, and <log(P/k)> = 2.57 cm^{-3} K, with standard deviations sigma_{n(HI)} = 3.0 cm^{-3}, sigma_T = 43 K, and sigma_{log(P/k)} = 0.22 cm^{-3} K. Interestingly, the pressures measured in these high redshift CI clouds are similar to those found in the Milky Way. We conclude that the CI gas is tracing a higher-density, higher-pressure region, possibly indicative of post-shock gas or a photodissociation region on the edge of a molecular cloud. We speculate that these clouds may be direct probes of the precursor sites of star formation in normal galaxies at high redshift.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا