No Arabic abstract
We introduce a new type of states for light in multimode waveguides featuring strongly enhanced or reduced spectral correlations. Based on the experimentally measured multi-spectral transmission matrix of a multimode fiber, we generate a set of states that outperform the established principal modes in terms of the spectral stability of their output spatial field profiles. Inverting this concept also allows us to create states with a minimal spectral correlation width, whose output profiles are considerably more sensitive to a frequency change than typical input wavefronts. The resulting super- and anti-principal modes are made orthogonal to each other even in the presence of mode-dependent loss. By decomposing them in the principal mode basis, we show that the super-principal modes are formed via interference of principal modes with closeby delay times, whereas the anti-principal modes are a superposition of principal modes with the most different delay times available in the fiber. Such novel states are expected to have broad applications in fiber communication, imaging, and spectroscopy.
We show that a synthetic pseudospin-momentum coupling can be used to design quasi-one-dimensional disorder-resistant coupled resonator optical waveguides (CROW). In this structure, the propagating Bloch waves exhibit a pseudospin-momentum locking at specific momenta where backscattering is suppressed. We quantify this resistance to disorder using two methods. First, we calculate the Anderson localization length $xi$, obtaining an order of magnitude enhancement compared to a conventional CROW for typical device parameters. Second, we study propagation in the time domain, finding that the loss of wavepacket purity in the presence of disorder rapidly saturates, indicating the preservation of phase information before the onset of Anderson localization. Our approach of directly optimizing the bulk Bloch waves is a promising alternative to disorder-robust transport based on higher dimensional topological edge states.
Development of acoustic and optoacoustic on-chip technologies calls for new solutions to guiding, storing and interfacing acoustic and optical waves in integrated silicon-on-insulator (SOI) systems. One of the biggest challenges in this field is to suppress the radiative dissipation of the propagating acoustic waves, while co-localizing the optical and acoustic fields in the same region of an integrated waveguide. Here we address this problem by introducing Anti-Resonant Reflecting Acoustic Waveguides (ARRAWs) -- mechanical analogues of the Anti-Resonant Reflecting Optical Waveguides (ARROWs). We discuss the principles of anti-resonant guidance and establish guidelines for designing efficient ARRAWs. Finally, we demonstrate examples of the simplest silicon/silica ARRAW platforms that can simultaneously serve as near-IR optical waveguides, and support strong backward Brillouin scattering.
We show that waveguides with a dielectric core and a lossy metamaterial cladding (metamaterial-dielectric guides) can support hybrid ordinary-surface modes previously only known for metal-dielectric waveguides. These hybrid modes are potentially useful for frequency filtering applications as sharp changes in field attenuation occur at tailorable frequencies. Our results also show that the surface modes of a metamaterial-dielectric waveguide with comparable electric and magnetic losses can be less lossy than the surface modes of an analogous metal-dielectric waveguide with electric losses alone. Through a characterization of both slab and cylindrical metamaterial-dielectric guides, we find that the surface modes of the cylindrical guides show promise as candidates for all-optical control of low-intensity pulses.
We consider the propagation of classical and non-classical light in multi-mode optical waveguides. We focus on the evolution of the few-photon correlation functions, which, much like the light-intensity distribution in such systems, evolve in a periodic manner, culminating in the revival of the initial correlation pattern at the end of each period. It is found that when the input state possesses non trivial symmetries, the correlation revival period can be longer than that of the intensity, and thus the same intensity pattern can display different correlation patterns. We experimentally demonstrate this effect for classical, pseudo-thermal light, and compare the results with the predictions for non-classical, quantum light.
We present a numerical study of electromagnetic wave transport in disordered quasi-one-dimensional waveguides at terahertz frequencies. Finite element method calculations of terahertz wave propagation within LiNbO$_{3}$ waveguides with randomly arranged air-filled circular scatterers exhibit an onset of Anderson localization at experimentally accessible length scales. Results for the average transmission as a function of waveguide length and scatterer density demonstrate a clear crossover from diffusive to localized transport regime. In addition, we find that transmission fluctuations grow dramatically when crossing into the localized regime. Our numerical results are in good quantitative agreement with theory over a wide range of experimentally accessible parameters both in the diffusive and localized regime opening the path towards experimental observation of terahertz wave localization.