Do you want to publish a course? Click here

Black Hole Superradiance Signatures of Ultralight Vectors

67   0   0.0 ( 0 )
 Added by Mae Teo
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The process of superradiance can extract angular momentum and energy from astrophysical black holes (BHs) to populate gravitationally-bound states with an exponentially large number of light bosons. We analytically calculate superradiant growth rates for vectors around rotating BHs in the regime where the vector Compton wavelength is much larger than the BH size. Spin-1 bound states have superradiance times as short as a second around stellar BHs, growing up to a thou- sand times faster than their spin-0 counterparts. The fast rates allow us to use measurements of rapidly spinning BHs in X-ray binaries to exclude a wide range of masses for weakly-coupled spin-1 particles, $5 times 10^{-14} - 2 times 10^{-11}$ eV; lighter masses in the range $6 times 10^{-20} - 2 times 10^{-17}$ eV start to be constrained by supermassive BH spin measurements at a lower level of confidence. We also explore routes to detection of new vector particles possible with the advent of gravitational wave (GW) astronomy. The LIGO-Virgo collaboration could discover hints of a new light vector particle in statistical analyses of masses and spins of merging BHs. Vector annihilations source continuous monochromatic gravitational radiation which could be observed by current GW observatories. At design sensitivity, Advanced LIGO may measure up to thousands of annihilation signals from within the Milky Way, while hundreds of BHs born in binary mergers across the observable universe may superradiate vector bound states and become new beacons of monochromatic gravitational waves.



rate research

Read More

Black hole superradiance is a powerful probe of light, weakly-coupled hidden sector particles. Many candidate particles, such as axions, generically have self-interactions that can influence the evolution of the superradiant instability. As pointed out in arXiv:1604.06422 in the context of a toy model, much of the existing literature on spin-0 superradiance does not take into account the most important self-interaction-induced processes. These processes lead to energy exchange between quasi-bound levels and particle emission to infinity; for large self-couplings, superradiant growth is saturated at a quasi-equilibrium configuration of reduced level occupation numbers. In this paper, we perform a detailed analysis of the rich dynamics of spin-0 superradiance with self-interactions, and the resulting observational signatures. We focus on quartic self-interactions, which dominate the evolution for most models of interest. We explore multiple distinct regimes of parameter space introduced by a non-zero self-interaction, including the simultaneous population of two or more bound levels; at large coupling, we confirm the basic picture of quasi-equilibrium saturation and provide evidence that the bosenova collapse does not occur in most of the astrophysical parameter space. Compared to gravitational superradiance, we find that gravitational wave annihilation signals and black hole spin-down are parametrically suppressed with increasing interactions, while new gravitational wave transition signals can take place for moderate interactions. The novel phenomenon of scalar wave emission is less suppressed at large couplings, and if the particle has Standard Model interactions, then coherent, monochromatic axion wave signals from black hole superradiance may be detectable in proposed axion dark matter experiments.
We study the gravitational-wave (GW) signatures of clouds of ultralight bosons around black holes (BHs) in binary inspirals. These clouds, which are formed via superradiance instabilities for rapidly rotating BHs, produce distinct effects in the population of BH masses and spins, and a continuous monochromatic GW signal. We show that the presence of a binary companion greatly enriches the dynamical evolution of the system, most remarkably through the existence of resonant transitions between the growing and decaying modes of the cloud (analogous to Rabi oscillations in atomic physics). These resonances have rich phenomenological implications for current and future GW detectors. Notably, the amplitude of the GW signal from the clouds may be reduced, and in many cases terminated, much before the binary merger. The presence of a boson cloud can also be revealed in the GW signal from the binary through the imprint of finite-size effects, such as spin-induced multipole moments and tidal Love numbers. The time dependence of the clouds energy density during the resonance leads to a sharp feature, or at least attenuation, in the contribution from the finite-size terms to the waveforms. The observation of these effects would constrain the properties of putative ultralight bosons through precision GW data, offering new probes of physics beyond the Standard Model.
String theory/M-theory generally predicts that axionic fields with a broad mass spectrum extending below 10^{-10}eV are produced after compactification to four dimensions. These axions/fields provoke a rich variety of cosmophysical phenomena on different scales depending on their masses and provide us new windows to probe the ultimate theory. In this article, after overviewing this axiverse idea, I take up the black hole instability as the most fascinating one among such axionic phenomena and explain its physical mechanism and astrophysical predictions.
Primordial black holes (PBHs) are a potential dark matter candidate whose masses can span over many orders of magnitude. If they have masses in the $10^{15}-10^{17}$ g range, they can emit sizeable fluxes of MeV neutrinos through evaporation via Hawking radiation. We explore the possibility of detecting light (non-)rotating PBHs with future neutrino experiments. We focus on two next generation facilities: the Deep Underground Neutrino Experiment (DUNE) and THEIA. We simulate the expected event spectra at both experiments assuming different PBH mass distributions and spins, and we extract the expected 95% C.L. sensitivities to these scenarios. Our analysis shows that future neutrino experiments like DUNE and THEIA will be able to set competitive constraints on PBH dark matter, thus providing complementary probes in a part of the PBH parameter space currently constrained mainly by photon data.
The circumgalactic medium (CGM) encodes signatures of the galaxy-formation process, including the interaction of galactic outflows driven by stellar and supermassive black hole (SMBH) feedback with the gaseous halo. Moving beyond spherically symmetric radial profiles, we study the textit{angular} dependence of CGM properties around $z=0$ massive galaxies in the IllustrisTNG simulations. We characterize the angular signal of density, temperature, and metallicity of the CGM as a function of galaxy stellar mass, halo mass, distance, and SMBH mass, via stacking. TNG predicts that the CGM is anisotropic in its thermodynamical properties and chemical content over a large mass range, $M_*sim10^{10-11.5}M_odot$. Along the minor axis directions, gas density is diluted, whereas temperature and metallicity are enhanced. These feedback-induced anisotropies in the CGM have a magnitude of $0.1-0.3$ dex, extend out to the halo virial radius, and peak at Milky Way-like masses, $M_*sim10^{10.8}M_odot$. In TNG, this mass scale corresponds to the onset of efficient SMBH feedback and the production of strong outflows. By comparing the anisotropic signals predicted by TNG versus other simulations -- Illustris and EAGLE -- we find that each simulation produces distinct signatures and mass dependencies, implying that this phenomenon is sensitive to the underlying physical models. Finally, we explore X-ray emission as an observable of this CGM anistropy, finding that future X-ray observations, including the eROSITA all-sky survey, will be able to detect and characterize this signal, particularly in terms of an angular modulation of the X-ray hardness.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا