Do you want to publish a course? Click here

Temporal and spectral manipulations of correlated photons using a time-lens

114   0   0.0 ( 0 )
 Added by Sunil Mittal
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

A common challenge in quantum information processing with photons is the limited ability to manipulate and measure correlated states. An example is the inability to measure picosecond scale temporal correlations of a multi-photon state, given state-of-the-art detectors have a temporal resolution of about 100 ps. Here, we demonstrate temporal magnification of time-bin entangled two-photon states using a time-lens, and measure their temporal correlation function which is otherwise not accessible because of the limited temporal resolution of single photon detectors. Furthermore, we show that the time-lens maps temporal correlations of photons to frequency correlations and could be used to manipulate frequency-bin entangled photons. This demonstration opens a new avenue to manipulate and analyze spectral and temporal wavefunctions of many-photon states.



rate research

Read More

Graph representations are a powerful concept for solving complex problems across natural science, as patterns of connectivity can give rise to a multitude of emergent phenomena. Graph-based approaches have proven particularly fruitful in quantum communication and quantum search algorithms in highly branched quantum networks. Here we introduce a new paradigm for the direct experimental realization of excitation dynamics associated with three-dimensional networks by exploiting the hybrid action of spatial and polarization degrees of freedom of photon pairs in complex waveguide circuits with tailored birefringence. This novel testbed for the experimental exploration of multi-particle quantum walks on complex, highly connected graphs paves the way towards exploiting the applicative potential of fermionic dynamics in integrated quantum photonics.
Synthetic dimensions in photonic structures provide unique opportunities for actively manipulating light in multiple degrees of freedom. Here, we theoretically explore a dispersive waveguide under the dynamic phase modulation that supports single pulse manipulations in the synthetic (2+1) dimensions. Compared with the counterpart of the conventional (2+1) space-time, we explore temporal diffraction and frequency conversion in a synthetic time-frequency space while the pulse evolves along the spatial dimension. By introducing the effective gauge potential well for photons in the synthetic time-frequency space with the control of the modulation phase, we show that a rich set of pulse propagation behaviors can be achieved, including confined pulse propagation, fast/slow light, and pulse compression. With the additional nonlinear oscillation subject to the effective force along the frequency axis of light, we provide an exotic approach for actively manipulating the single pulse in both temporal and spectral domains, which shows the great promise for applications of the pulse processing and optical communications in integrated photonics.
We report on the fabrication of high-Q, fused-quartz microresonators and the parametric generation of a frequency comb with 36 GHz line spacing using them. We have characterized the intrinsic stability of the comb in both the time and frequency domains to assess its suitability for future precision metrology applications. Intensity autocorrelation measurements and line-by-line comb control reveal near-transform-limited picosecond pulse trains that are associated with good relative phase and amplitude stability of the comb lines. The combs 36 GHz line spacing can be readily photodetected, which enables measurements of its intrinsic and absolute phase fluctuations.
Recent advances in techniques for generating quantum light have stimulated research on novel spectroscopic measurements using quantum entangled photons. One such spectroscopy technique utilizes non-classical correlations among entangled photons to enable measurements with enhanced sensitivity and selectivity. Here, we investigate spectroscopic measurement utilizing entangled three photons. In this measurement, time-resolved entangled photon spectroscopy with monochromatic pumping [J. Chem. Phys. 153, 051102 (2020).] is integrated with the frequency-dispersed two-photon counting technique, which suppresses undesired accidental photon counts in the detector and thus allows one to separate the weak desired signal. This time-resolved frequency-dispersed two-photon counting signal, which is a function of two frequencies, is shown to provide the same information as that of coherent two-dimensional optical spectra. The spectral distribution of the phase-matching function works as a frequency filter to selectively resolve a specific region of the two-dimensional spectra, whereas the excited-state dynamics under investigation are temporally resolved in the time region longer than the entanglement time. The signal is not subject to Fourier limitations on the joint temporal and spectral resolution, and therefore, it is expected to be useful for investigating complex molecular systems in which multiple electronic states are present within a narrow energy range.
57 - Rijan Maharjan 2020
We demonstrate an on-chip Silicon-on-Insulator (SOI) axicon etched using a low resolution (200 nm feature size, 250 nm gap) deep-ultraviolet lithographic fabrication. The axicon consists of circular gratings with seven stages of 1x2 multimode interferometers. We present a technique to apodize the gratings azimuthally by breaking up the circles into arcs which successfully increased the penetration depth in the gratings from $approx$5 $mu$m to $approx$55 $mu$m. We characterize the devices performance by coupling 1300$pm$50 nm swept source laser in to the chip from the axicon, and measuring the out-coupled light from a grating coupler. Further, we also present the implementation of balanced homodyne detection method for the spectral characterization of the device and show that the position of the output lobe of the axicon does not change significantly with wavelength.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا