Do you want to publish a course? Click here

MOEMS deformable mirror testing in cryo for future optical instrumentation

108   0   0.0 ( 0 )
 Added by Franck Marchis
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

MOEMS Deformable Mirrors (DM) are key components for next generation instruments with innovative adaptive optics systems, in existing telescopes and in the future ELTs. These DMs must perform at room temperature as well as in cryogenic and vacuum environment. Ideally, the MOEMS-DMs must be designed to operate in such environment. We present some major rules for designing / operating DMs in cryo and vacuum. We chose to use interferometry for the full characterization of these devices, including surface quality measurement in static and dynamical modes, at ambient and in vacuum/cryo. Thanks to our previous set-up developments, we placed a compact cryo-vacuum chamber designed for reaching 10-6 mbar and 160K, in front of our custom Michelson interferometer, able to measure performances of the DM at actuator/segment level as well as whole mirror level, with a lateral resolution of 2{mu}m and a sub-nanometric z-resolution. Using this interferometric bench, we tested the Iris AO PTT111 DM: this unique and robust design uses an array of single crystalline silicon hexagonal mirrors with a pitch of 606{mu}m, able to move in tip, tilt and piston with strokes from 5 to 7{mu}m, and tilt angle in the range of +/-5mrad. They exhibit typically an open-loop flat surface figure as good as <20nm rms. A specific mount including electronic and opto-mechanical interfaces has been designed for fitting in the test chamber. Segment deformation, mirror shaping, open-loop operation are tested at room and cryo temperature and results are compared. The device could be operated successfully at 160K. An additional, mainly focus-like, 500 nm deformation is measured at 160K; we were able to recover the best flat in cryo by correcting the focus and local tip-tilts on some segments. Tests on DM with different mirror thicknesses (25{mu}m and 50{mu}m) and different coatings (silver and gold) are currently under way.



rate research

Read More

The Calar Alto Observatory, located at 2168m height above the sea level in continental Europe, holds a significant number of astronomical telescopes and experiments, covering a large range of the electromagnetic domain, from gamma-ray to near-infrared. It is a very well characterized site, with excellent logistics. Its main telescopes includes a large suite of instruments. At the present time, new instruments, namely CAFE, PANIC and Carmenes, are under development. We are also planning a new operational scheme in order to optimize the observatory resources.
We present the conceptual design and initial development of the Hysteretic Deformable Mirror (HDM). The HDM is a completely new approach to the design and operation of deformable mirrors for wavefront correction in advanced imaging systems. The key technology breakthrough is the application of highly hysteretic piezoelectric material in combination with a simple electrode layout to efficiently define single actuator pixels. The set-and-forget nature of the HDM, which is based on the large remnant deformation of the newly developed piezo material, facilitates the use of time division multiplexing (TDM) to address the single pixels without the need for high update frequencies to avoid pixel drift. This, in combination with the simple electrode layout, paves the way for upscaling to extremely high pixel numbers ($geq 128times 128$) and pixel density ($100/mm^2$) deformable mirrors (DMs), which is of great importance for high spatial frequency wavefront correction in some of the most advanced imaging systems in the world.
In the framework of the GLARE-X (Geodesy via LAser Ranging from spacE X) project, led by INFN and funded for the years 2019-2021, aiming at significantly advance space geodesy, one shows the initial activities carried out in 2019 in order to manufacture and test adaptive mirrors. This specific article deals with manufacturing and surface quality measurements of the passive substrate of candidate MEMS (Micro-Electro-Mechanical Systems) mirrors for MRRs (Modulated RetroReflectors); further publications will show the active components. The project GLARE-X was approved by INFN for the years 2019-2021: it involves several institutions, including, amongst the other, INFN-LNF and FBK. GLARE-X is an innovative R&D activity, whose at large space geodesy goals will concern the following topics: inverse laser ranging (from a laser terminal in space down to a target on a planet), laser ranging for debris removal and iterative orbit correction, development of high-end ToF (Time of Flight) electronics, manufacturing and testing of MRRs for space, and provision of microreflectors for future NEO (Near Earth Orbit) cubesats. This specific article summarizes the manufacturing and surface quality measurements activities performed on the passive substrate of candidate MEMS mirrors, which will be in turn arranged into MRRs. The final active components, to be realized by 2021, will inherit the manufacturing characteristics chosen thanks to the presented (and further) testing campaigns, and will find suitable space application to NEO, Moon, and Mars devices, like, for example, cooperative and active lidar scatterers for laser altimetry and lasercomm support.
302 - Sergio Fabiani 2018
The maturity of current detectors based on technologies that range from solid state to gases renewed the interest for X-ray polarimetry, raising the enthusiasm of a wide scientific community to improve the performance of polarimeters as well as to produce more detailed theoretical predictions. We will introduce the basic concepts about measuring the polarization of photons, especially in the X-rays, and we will review the current state of the art of polarimeters in a wide energy range from soft~to hard X-rays, from solar flares to distant astrophysical sources. We will introduce relevant examples of polarimeters developed from the recent past up to the panorama of upcoming space missions to show how the recent development of the technology is allowing reopening the observational window of X-ray polarimetry.
In order to evaluate the potential of MEMS deformable mirrors for open-loop applications, a complete calibration process was performed on a 1024-actuator mirror. The mirror must be perfectly calibrated to obtain deterministic membrane deflection. The actuators stroke-voltage relationship and the effect of the non- additivity of the influence functions are studied and finally integrated in an open-loop control process. This experiment aimed at minimizing the residual error obtained in open-loop control.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا