Do you want to publish a course? Click here

Apparent temperature-induced reorientation of quantum Hall stripes

109   0   0.0 ( 0 )
 Added by Michael A. Zudov
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Our magnetotransport measurements of quantum Hall stripes in a high-quality GaAs quantum well in a slightly tilted magnetic field reveal that the orientation of stripes can be changed by temperature. Field-cooling and field-warming measurements, as well as observation of hysteresis at intermediate temperatures allow us to conclude that the observed temperature-induced reorientation of stripes is owing to the existence of two distinct minima in the symmetry-breaking potential. We also find that the native symmetry-breaking mechanism does not depend on temperature and that low-temperature magnetotransport data should be treated with caution as they do not necessarily reveal the true ground state, even in the absence of hysteresis.

rate research

Read More

385 - Q. Shi , M. A. Zudov , J.D. Watson 2016
We investigate the effect of the filling factor on transport anisotropies, known as stripes, in high Landau levels of a two-dimensional electron gas. We find that at certain in-plane magnetic fields, the stripes orientation is sensitive to the filling factor within a given Landau level. This sensitivity gives rise to the emergence of stripes away from half-filling while an orthogonally-oriented, native stripes reside at half-filling. This switching of the anisotropy axes within a single Landau level can be attributed to a strong dependence of the native symmetry breaking potential on the filling factor.
We numerically investigate the interplay of disorder and electron-electron interactions in the integer quantum Hall effect. In particular, we focus on the behaviour of the electronic compressibility as a function of magnetic field and electron density. We find manifestations of non-linear screening and charging effects around integer filling factors, consistent with recent imaging experiments. Our calculations exhibit $g$-factor enhancement as well as strong overscreening in the centre of the Landau bands. Even though the critical behaviour appears mostly unaffected by interactions, important implications for the phase diagram arise. Our results are in very good agreement with the experimental findings and strongly support the relevance of electron-electron interactions for understanding integer quantum Hall physics.
131 - X. Fu , Q. Shi , M. A. Zudov 2019
We report on quantum Hall stripes (QHSs) formed in higher Landau levels of GaAs/AlGaAs quantum wells with high carrier density ($n_e > 4 times 10^{11}$ cm$^{-2}$) which is expected to favor QHS orientation along unconventional $left < 1bar{1}0 right >$ crystal axis and along the in-plane magnetic field $B_{||}$. Surprisingly, we find that at $B_{||} = 0$ QHSs in our samples are aligned along $left < 110 right >$ direction and can be reoriented only perpendicular to $B_{||}$. These findings suggest that high density alone is not a decisive factor for either abnormal native QHS orientation or alignment with respect to $B_{||}$, while quantum confinement of the 2DEG likely plays an important role.
The quantum Hall system can be used to study many-body physics owing to its multiple internal electronic degrees of freedom and tunability. While quantum phase transitions have been studied intensively, research on the temperature-induced phase transitions of this system is limited. We measured the pure bulk conductivity of a quantum Hall antiferromagnetic state in bilayer graphene over a wide range of temperatures and revealed the two-step phase transition associated with the breaking of the long-range order and short-range antiferromagnetic order. Our findings are fundamental to understanding electron correlation in quantum Hall systems.
We report on an absolute measurement of the electronic spin polarization of the $ u=1$ integer quantum Hall state. The spin polarization is extracted in the vicinity of $ u=1$ (including at exactly $ u=1$) via resistive NMR experiments performed at different magnetic fields (electron densities), and Zeeman energy configurations. At the lowest magnetic fields, the polarization is found to be complete in a narrow region around $ u=1$. Increasing the magnetic field (electron density) induces a significant depolarization of the system, which we attribute to a transition between the quantum Hall ferromagnet and the Skyrmion glass phase theoretically expected as the ratio between Coulomb interactions and disorder is increased. These observations account for the fragility of the polarization previously observed in high mobility 2D electron gas, and experimentally demonstrate the existence of an optimal amount of disorder to stabilize the ferromagnetic state.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا