Do you want to publish a course? Click here

Multiparty Session Types, Beyond Duality (Abstract)

118   0   0.0 ( 0 )
 Added by EPTCS
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

Multiparty Session Types (MPST) are a well-established typing discipline for message-passing processes interacting on sessions involving two or more participants. Session typing can ensure desirable properties: absence of communication errors and deadlocks, and protocol conformance. However, existing MPST works provide a subject reduction result that is arguably (and sometimes, surprisingly) restrictive: it only holds for typing contexts with strong duality constraints on the interactions between pairs of participants. Consequently, many intuitively correct examples cannot be typed and/or cannot be proved type-safe. We illustrate some of these examples, and discuss the reason for these limitations. Then, we outline a novel MPST typing system that removes these restrictions.



rate research

Read More

124 - Simon J. Gay 2020
Duality is a central concept in the theory of session types. Since a flaw was found in the original definition of duality for recursive types, several other definitions have been published. As their connection is not obvious, we compare the competing definitions, discuss tradeoffs, and prove some equivalences. Some of the results are mechanized in Agda.
154 - Anson Miu 2021
Modern web programming involves coordinating interactions between browser clients and a server. Typically, the interactions in web-based distributed systems are informally described, making it hard to ensure correctness, especially communication safety, i.e. all endpoints progress without type errors or deadlocks, conforming to a specified protocol. We present STScript, a toolchain that generates TypeScript APIs for communication-safe web development over WebSockets, and RouST, a new session type theory that supports multiparty communications with routing mechanisms. STScript provides developers with TypeScript APIs generated from a communication protocol specification based on RouST. The generated APIs build upon TypeScript concurrency practices, complement the event-driven style of programming in full-stack web development, and are compatible with the Node.js runtime for server-side endpoints and the React.js framework for browser-side endpoints. RouST can express multiparty interactions routed via an intermediate participant. It supports peer-to-peer communication between browser-side endpoints by routing communication via the server in a way that avoids excessive serialisation. RouST guarantees communication safety for endpoint web applications written using STScript APIs. We evaluate the expressiveness of STScript for modern web programming using several production-ready case studies deployed as web applications.
Session types are a rich type discipline, based on linear types, that lifts the sort of safety claims that come with type systems to communications. However, web-based applications and microservices are often written in a mix of languages, with type disciplines in a spectrum between static and dynamic typing. Gradual session types address this mixed setting by providing a framework which grants seamless transition between statically typed handling of sessions and any required degree of dynamic typing. We propose Gradual GV as a gradually typed extension of the functional session type system GV. Following a standard framework of gradual typing, Gradual GV consists of an external language, which relaxes the type system of GV using dynamic types, and an internal language with casts, for which operational semantics is given, and a cast-insertion translation from the former to the latter. We demonstrate type and communication safety as well as blame safety, thus extending previous results to functional languages with session-based communication. The interplay of linearity and dynamic types requires a novel approach to specifying the dynamics of the language.
77 - Assel Altayeva 2019
This paper addresses a problem found within the construction of Service Oriented Architecture: the adaptation of service protocols with respect to functional redundancy and heterogeneity of global communication patterns. We utilise the theory of Multiparty Session Types (MPST). Our approach is based upon the notion of a multiparty session type isomorphism, utilising a novel constructive realisation of service adapter code to establishing equivalence. We achieve this by employing trace semantics over a collection of local types and introducing meta abstractions over the syntax of global types. We develop a corresponding equational theory for MPST isomorphisms. The main motivation for this line of work is to define a type isomorphism that affords the assessment of whether two components/services are substitutables, modulo adaptation code given software components formalised as session types.
137 - Luca Padovani 2009
We (re)define session types as projections of process behaviors with respect to the communication channels they use. In this setting, we give session types a semantics based on fair testing. The outcome is a unified theory of behavioral types that shares common aspects with conversation types and that encompass features of both dyadic and multi-party session types. The point of view we provide sheds light on the nature of session types and gives us a chance to reason about them in a framework where every notion, from well-typedness to the subtyping relation between session types, is semantically -rather than syntactically- grounded.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا