No Arabic abstract
Unrevealing local magnetic and electronic correlations in the vicinity of charge carriers is crucial in order to understand rich physical properties in correlated electron systems. Here, using high-energy optical conductivity (up to 35 eV) as a function of temperature and polarization, we observe a surprisingly strong spin polarization of the local spin singlet with enhanced ferromagnetic correlations between Cu spins near the doped holes in lightly hole-doped La$_{1.95}$Sr$_{0.05}$Cu$_{0.95}$Zn$_{0.05}$O$_{4}$. The changes of the local spin polarization manifest strongly in the temperature-dependent optical conductivity at ~7.2 eV, with an anomaly at the magnetic stripe phase (~25 K), accompanied by anomalous spectral-weight transfer in a broad energy range. Supported by theoretical calculations, we also assign high-energy optical transitions and their corresponding temperature dependence, particularly at ~2.5 ~8.7, ~9.7, ~11.3 and ~21.8 eV. Our result shows the importance of a strong mixture of spin singlet and triplet states in hole-doped cuprates and demonstrates a new strategy to probe local magnetic correlations using high- energy optical conductivity in correlated electron systems.
Inelastic neutron scattering (INS), electron spin (ESR) and nuclear magnetic resonance (NMR) measurements were employed to establish the origin of the strong magnetic signal in lightly hole-doped La_{1-x}Sr_xCoO_3, x=0.002. Both, INS and ESR low temperature spectra show intense excitations with large effective g-factors ~10-18. NMR data indicate the creation of extended magnetic clusters. From the Q-dependence of the INS magnetic intensity we conclude that the observed anomalies are caused by the formation of octahedrally shaped spin-state polarons comprising seven Co ions.
We argue that tetragonal CuO (T-CuO) has the potential to finally settle long-standing modelling issues for cuprate physics. We compare the one-hole quasiparticle (qp) dispersion of T-CuO to that of cuprates, in the framework of the strongly-correlated ($U_{dd}rightarrow infty$) limit of the three-band Emery model. Unlike in CuO$_2$, magnetic frustration in T-CuO breaks the $C_4$ rotational symmetry and leads to strong deviations from the Zhang-Rice singlet picture in parts of the reciprocal space. Our results are consistent with angle-resolved photoemission spectroscopy data but in sharp contradiction to those of a one-band model previously suggested for them. These differences identify T-CuO as an ideal material to test a variety of scenarios proposed for explaining cuprate phenomenology.
The charge dynamics in weakly hole doped high temperature superconductors is studied in terms of the accurate numerical solution to a model of a single hole interacting with a quantum lattice in an antiferromagnetic background, and accurate far-infrared ellipsometry measurements. The experimentally observed two electronic bands in the infrared spectrum can be identified in terms of the interplay between the electron correlation and electron-phonon interaction resolving the long standing mystery of the mid-infrared band.
We have performed density-matrix renormalization group studies of a square lattice $t$-$J$ model with small hole doping, $deltall 1$, on long 4 and 6 leg cylinders. We include frustration in the form of a second-neighbor exchange coupling, $J_2 = J_1/2$, such that the undoped ($delta=0$) parent state is a quantum spin liquid. In contrast to the relatively short range superconducting (SC) correlations that have been observed in recent studies of the 6-leg cylinder in the absence of frustration, we find power law SC correlations with a Luttinger exponent, $K_{sc} approx 1$, consistent with a strongly diverging SC susceptibility, $chi sim T^{-(2-K_{sc})}$ as the temperature $Tto 0$. The spin-spin correlations - as in the undoped state - fall exponentially suggesting that the SC pairing correlations evolve smoothly from the insulating parent state.
The electron-boson spectral density function I^2ChiOmega responsible for carrier scattering of the high temperature superconductor HgBa2CuO4 (Tc = 90 K) is calculated from new data on the optical scattering rate. A maximum entropy technique is used. Published data on HgBa2Ca2Cu3O8 (Tc = 130 K) are also inverted and these new results are put in the context of other known cases. All spectra (with two notable exceptions) show a peak at an energy (Omega_r) proportional to the superconducting transition temperature Omega_r ~= 6.3 kB.Tc. This charge channel relationship follows closely the magnetic resonance seen by polarized neutron scattering, Omega_r^{neutron} ~= 5.4 kB.Tc. The amplitudes of both peaks decrease strongly with increasing temperature. In some cases, the peak at Omega_r is weak and the spectrum can have additional maxima and a background extending up to several hundred meV.