Do you want to publish a course? Click here

The Monte Carlo simulation of the Borexino detector

92   0   0.0 ( 0 )
 Added by Alessio Caminata
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We describe the Monte Carlo (MC) simulation package of the Borexino detector and discuss the agreement of its output with data. The Borexino MC ab initio simulates the energy loss of particles in all detector components and generates the resulting scintillation photons and their propagation within the liquid scintillator volume. The simulation accounts for absorption, reemission, and scattering of the optical photons and tracks them until they either are absorbed or reach the photocathode of one of the photomultiplier tubes. Photon detection is followed by a comprehensive simulation of the readout electronics response. The algorithm proceeds with a detailed simulation of the electronics chain. The MC is tuned using data collected with radioactive calibration sources deployed inside and around the scintillator volume. The simulation reproduces the energy response of the detector, its uniformity within the fiducial scintillator volume relevant to neutrino physics, and the time distribution of detected photons to better than 1% between 100 keV and several MeV. The techniques developed to simulate the Borexino detector and their level of refinement are of possible interest to the neutrino community, especially for current and future large-volume liquid scintillator experiments such as Kamland-Zen, SNO+, and Juno.



rate research

Read More

66 - M. Antonello 2018
SABRE (Sodium-iodide with Active Background REjection) is a direct dark matter search experiment based on an array of radio-pure NaI(Tl) crystals surrounded by a liquid scintillator veto. Twin SABRE experiments in the Northern and Southern Hemispheres will differentiate a dark matter signal from seasonal and local effects. The experiment is currently in a Proof-of-Principle (PoP) phase, whose goal is to demonstrate that the background rate is low enough to carry out an independent search for a dark matter signal, with sufficient sensitivity to confirm or refute the DAMA result during the following full-scale experimental phase. The impact of background radiation from the detector materials and the experimental site needs to be carefully investigated, including both intrinsic and cosmogenically activated radioactivity. Based on the best knowledge of the most relevant sources of background, we have performed a detailed Monte Carlo study evaluating the expected background in the dark matter search spectral region. The simulation model described in this paper guides the design of the full-scale experiment and will be fundamental for the interpretation of the measured background and hence for the extraction of a possible dark matter signal.
138 - B. Beltran , H. Bichsel , B. Cai 2011
The third phase of the Sudbury Neutrino Observatory (SNO) experiment added an array of 3He proportional counters to the detector. The purpose of this Neutral Current Detection (NCD) array was to observe neutrons resulting from neutral-current solar neutrino-deuteron interactions. We have developed a detailed simulation of the current pulses from the NCD array proportional counters, from the primary neutron capture on 3He through the NCD array signal-processing electronics. This NCD array Monte Carlo simulation was used to model the alpha-decay background in SNOs third-phase 8B solar-neutrino measurement.
A comprehensive monitoring system for the thermal environment inside the Borexino neutrino detector was developed and installed in order to reduce uncertainties in determining temperatures throughout the detector. A complementary thermal management system limits undesirable thermal couplings between the environment and Borexinos active sections. This strategy is bringing improved radioactive background conditions to the region of interest for the physics signal thanks to reduced fluid mixing induced in the liquid scintillator. Although fluid-dynamical equilibrium has not yet been fully reached, and thermal fine-tuning is possible, the system has proven extremely effective at stabilizing the detectors thermal conditions while offering precise insights into its mechanisms of internal thermal transport. Furthermore, a Computational Fluid-Dynamics analysis has been performed, based on the empirical measurements provided by the thermal monitoring system, and providing information into present and future thermal trends. A two-dimensional modeling approach was implemented in order to achieve a proper understanding of the thermal and fluid-dynamics in Borexino. It was optimized for different regions and periods of interest, focusing on the most critical effects that were identified as influencing background concentrations. Literature experimental case studies were reproduced to benchmark the method and settings, and a Borexino-specific benchmark was implemented in order to validate the modeling approach for thermal transport. Finally, fully-convective models were applied to understand general and specific fluid motions impacting the detectors Active Volume.
138 - Ze She , Hao Ma , Weihe Zeng 2021
A Geant4-based simulation framework for rare event searching experiments with germanium detectors named SAGE is presented with details. It is designed for simulating, assessing, analyzing background components and investigating the response of the germanium detectors. The SAGE framework incorporates its experiment-specific geometries and custom attributes, including the event generator, physical lists and output format, to satisfy various simulation objectives. Its docker image has been prepared for virtualizing and distributing the SAGE framework. Deployment a Geant4-based simulation will be convenient under this docker image. The implemented geometries include both the p-type point contact and broad energy germanium detectors with environmental surroundings, and these hierarchical geometries can be easily extended. Users select these custom attributes via the JSON configuration file. The aforementioned attributes satisfy the simulation demands and make SAGE become a generic and powerful simulation framework for CDEX experiment.
112 - F.F. An , S.S. Sun , H.M. Liu 2016
A GEANT4-based simulation is developed for the endcap time of flight (ETOF) upgrade based on multi-gap resistive plate chambers (MRPC) for the BESIII experiment. The MRPC prototype and the simulation method are described. Using a full Monte-Carlo simulation, the influence of high voltage and threshold on time resolution and detection efficiency are investigated. The preliminary results from simulation are presented and are compared with the experimental data taken with the prototype MRPC modules.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا