Do you want to publish a course? Click here

Monte-Carlo study of the MRPC prototype for the upgrade of BESIII

113   0   0.0 ( 0 )
 Added by Fenfen An
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

A GEANT4-based simulation is developed for the endcap time of flight (ETOF) upgrade based on multi-gap resistive plate chambers (MRPC) for the BESIII experiment. The MRPC prototype and the simulation method are described. Using a full Monte-Carlo simulation, the influence of high voltage and threshold on time resolution and detection efficiency are investigated. The preliminary results from simulation are presented and are compared with the experimental data taken with the prototype MRPC modules.



rate research

Read More

In order to improve the particle identification capability of the Beijing Spectrometer III (BESIII),t is proposed to upgrade the current endcap time-of-flight (ETOF) detector with multi-gap resistive plate chamber (MRPC) technology. Aiming at extending ETOF overall time resolution better than 100ps, the whole system including MRPC detectors, new-designed Front End Electronics (FEE), CLOCK module, fast control boards and time to digital modules (TDIG), was built up and operated online 3 months under the cosmic ray. The main purposes of cosmic ray test are checking the detectors construction quality, testing the joint operation of all instruments and guaranteeing the performance of the system. The results imply MRPC time resolution better than 100$ps$, efficiency is about 98$%$ and the noise rate of strip is lower than 1$Hz/$($scm^{2}$) at normal threshold range, the details are discussed and analyzed specifically in this paper. The test indicates that the whole ETOF system would work well and satisfy the requirements of upgrade.
126 - M. Ullrich , W. Kuhn , Y. Liang 2014
The results of a full simulation of an endcap Time-of-Flight detector upgrade based on multigap resistive plate chambers for the BESIII experiment are presented. The simulation and reconstruction software is based on Geant4 and has been implemented into the BESIII Offline Software System. The results of the simulations are compared with beam test results and it is shown that a total time resolution $sigma$ of about 80 ps can be achieved allowing for a pion and kaon separation up to momenta of 1.4 GeV/c at a 95% confidence level.
We describe the Monte Carlo (MC) simulation package of the Borexino detector and discuss the agreement of its output with data. The Borexino MC ab initio simulates the energy loss of particles in all detector components and generates the resulting scintillation photons and their propagation within the liquid scintillator volume. The simulation accounts for absorption, reemission, and scattering of the optical photons and tracks them until they either are absorbed or reach the photocathode of one of the photomultiplier tubes. Photon detection is followed by a comprehensive simulation of the readout electronics response. The algorithm proceeds with a detailed simulation of the electronics chain. The MC is tuned using data collected with radioactive calibration sources deployed inside and around the scintillator volume. The simulation reproduces the energy response of the detector, its uniformity within the fiducial scintillator volume relevant to neutrino physics, and the time distribution of detected photons to better than 1% between 100 keV and several MeV. The techniques developed to simulate the Borexino detector and their level of refinement are of possible interest to the neutrino community, especially for current and future large-volume liquid scintillator experiments such as Kamland-Zen, SNO+, and Juno.
A new small-diameter Monitored Drift Tube (sMDT) chamber has been developed for the muon spectrometer of the ATLAS experiment to handle the higher collision rates expected at the CERN High Luminosity Large Hadron Collider (HL-LHC). This paper presents measurements of the tracking resolution and hit efficiency of two prototype sMDT chambers constructed at the University of Michigan. Using cosmic-ray muons the sMDT tracking resolution of 103.7$pm8.1$ textmu m was measured for one chamber and 101.8$pm$7.8 textmu m for the other, compared with a design resolution of 106 textmu m. A further tracking resolution improvement to 83.4$pm$7.8 textmu m was obtained by using new high-gain readout electronics which will be added for HL-LHC. An average tracking efficiency of (98.5$pm$0.2)% was found for both chambers. The methodology used to determine the detector tracking resolution and efficiency, including reconstruction of sMDT data and a Geant4 simulation of the test chamber, is presented in detail.
66 - M. Antonello 2018
SABRE (Sodium-iodide with Active Background REjection) is a direct dark matter search experiment based on an array of radio-pure NaI(Tl) crystals surrounded by a liquid scintillator veto. Twin SABRE experiments in the Northern and Southern Hemispheres will differentiate a dark matter signal from seasonal and local effects. The experiment is currently in a Proof-of-Principle (PoP) phase, whose goal is to demonstrate that the background rate is low enough to carry out an independent search for a dark matter signal, with sufficient sensitivity to confirm or refute the DAMA result during the following full-scale experimental phase. The impact of background radiation from the detector materials and the experimental site needs to be carefully investigated, including both intrinsic and cosmogenically activated radioactivity. Based on the best knowledge of the most relevant sources of background, we have performed a detailed Monte Carlo study evaluating the expected background in the dark matter search spectral region. The simulation model described in this paper guides the design of the full-scale experiment and will be fundamental for the interpretation of the measured background and hence for the extraction of a possible dark matter signal.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا