Do you want to publish a course? Click here

X-ray observations of FO Aqr during the 2016 low state

75   0   0.0 ( 0 )
 Added by Mark Kennedy
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the first ever X-ray data taken of an intermediate polar, FO Aqr, when in a low accretion state and during the subsequent recovery. The Swift and Chandra X-ray data taken during the low accretion state in July 2016 both show a softer spectrum when compared to archival data taken when FO Aqr was in a high state. The X-ray spectrum in the low state showed a significant increase in the ratio of the soft X-ray flux to the hard X-ray flux due to a change in the partial covering fraction of the white dwarf from $>85%$ to $70^{+5}_{-8}%$ and a change in the hydrogen column density within the disc from 19$^{+1.2}_{-0.9}times 10^{22}$ cm$^{-2}$ to 1.3$^{+0.6}_{-0.3}times 10^{22}$ cm$^{-2}$. XMM-Newton observations of FO Aqr during the subsequent recovery suggest that the system had not yet returned to its typical high state by November 2016, with the hydrogen column density within the disc found to be 15$^{+3.0}_{-2.0}$ cm$^{-2}$. The partial covering fraction varied in the recovery state between $85%$ and $95%$. The spin period of the white dwarf in 2014 and 2015 has also been refined to 1254.3342(8) s. Finally, we find an apparent phase difference between the high state X-ray pulse and recovery X-ray pulse of 0.17, which may be related to a restructuring of the X-ray emitting regions within the system.



rate research

Read More

FO Aquarii, an asynchronous magnetic cataclysmic variable (intermediate polar) went into a low-state in 2016, from which it slowly and steadily recovered without showing dwarf nova outbursts. This requires explanation since in a low-state, the mass-transfer rate is in principle too low for the disc to be fully ionized and the disc should be subject to the standard thermal and viscous instability observed in dwarf novae. We investigate the conditions under which an accretion disc in an intermediate polar could exhibit a luminosity drop of 2 magnitudes in the optical band without showing outbursts. We use our numerical code for the time evolution of accretion discs, including other light sources from the system (primary, secondary, hot spot). We show that although it is marginally possible for the accretion disc in the low-state to stay on the hot stable branch, the required mass-transfer rate in the normal state would then have to be extremely high, of the order of 10$^{19}$ gs$^{-1}$ or even larger. This would make the system so intrinsically bright that its distance should be much larger than allowed by all estimates. We show that observations of FO Aqr are well accounted for by the same mechanism that we have suggested as explaining the absence of outbursts during low states of VY Scl stars: during the decay, the magnetospheric radius exceeds the circularization radius, so that the disc disappears before it enters the instability strip for dwarf nova outbursts. Our results are unaffected, and even reinforced, if accretion proceeds both via the accretion disc and directly via the stream during some intermediate stages; the detailed process through which the disc disappears still needs investigations.
Between May 2016 and September 2018, the intermediate polar (IP) FO Aquarii exhibited two distinct low states and one failed low state. We present optical spectroscopy of FO Aquarii throughout this period, making this the first detailed study of an accretion disc during a low state in any IP. Analysis of these data confirm that the low states are the result of a drop in the mass transfer rate between the secondary star and the magnetic white dwarf primary, and are characterised by a decrease in the systems brightness coupled with a change of the systems accretion structures from an accretion disc-fed geometry to a combination of disc-fed and ballistic stream-fed accretion, and that effects from accretion onto both magnetic poles become detectable. The failed low state only displays a decrease in brightness, with the accretion geometry remaining primarily disc-fed. We also find that the WD appears to be exclusively accretion disc-fed during the high state. There is evidence for an outflow close to the impact region between the ballistic stream and the disc which is detectable in all of the states. Finally, there is marginal evidence for narrow high velocity features in the H$alpha$ emission line during the low states which may arise due to an outflow from the WD. These features may be evidence of a collimated jet, a long predicted yet elusive feature of cataclysmic variables.
91 - S. Scaringi MPE 2016
We analyse the K2 short cadence data of the intermediate polar FO Aqr and provide accurate and updated orbital and spin periodicities. We additionally find small spin period changes as a function of orbital phase of ~0.02 seconds translating to velocities of ~ a few km/s. The obtained orbital-folded velocity profile displays two clear maxima and minima, and cannot be explained by the radial velocity of the orbiting white dwarf. Instead we propose that the observed velocities are the sum of the radial velocities of both the white dwarf and of the stellar surface facing the white dwarf which reprocesses the WD spin pulses. This combination can explain the observed low velocities in FO Aqr. However asymmetries in the orbital configuration are required to explain the double peaked velocity profile. One possible scenario would invoke binary eccentricity. We thus developed a simple binary model to explain and fit our observations, and find a small binary eccentricity of e=0.03. Although small, persistent eccentricity in a close interacting binary would induce enhanced mass transfer occurring preferentially at periastron passages. We thus discuss alternative scenarios where other asymmetries might explain our observations assuming circular orbits. Since FO Aqr is the first system where the combined radial velocities of both the WD and secondary surface have been measured, it is possible that other mass-transferring binaries also display similar velocity curves when observed with Kepler. These will provide additional valuable tests to either confirm or rule out small eccentricities in similar systems.
154 - P. Zemko , M. Orio , K. Mukai 2014
Four VY Scl-type nova-like systems were observed in X-rays during both the low and the high optical states. We examined Chandra, ROSAT, Swift and Suzaku archival observations of BZ Cam, MV Lyr, TT Ari, and V794 Aql. The X-ray flux of BZ Cam is higher during the low state, but there is no supersoft X-ray source (SSS) as hypothesized in previous articles. No SSS was detected in the low state of the any of the other systems, with the X-ray flux decreasing by a factor between 2 and 50. The best fit to the Swift X-ray spectra is obtained with a multi-component model of plasma in collisional ionization equilibrium. The high state high resolution spectra of TT Ari taken with Chandra ACIS-S and the HETG gratings show a rich emission line spectrum, with prominent lines of in Mg, Si, Ne, and S. The complexity of this spectrum seems to have origin in more than one region, or more than one single physical mechanism. While several emission lines are consistent with a cooling flow in an accretion stream, there is at least an additional component. We discuss the origin of this component, which is probably arising in a wind from the system. We also examine the possibility that the VY Scl systems may be intermediate polars, and that while the boundary layer of the accretion disk emits only in the extreme ultraviolet, part of the X-ray flux may be due to magnetically driven accretion.
80 - Yael Naze , G. Rauw 2019
To help constrain the origin of the peculiar X-ray emission of gamma Cas stars, we conducted a simultaneous optical and X-ray monitoring of pi Aqr in 2018. At that time, the star appeared optically bright and active, with a very strong Halpha emission. Our monitoring covers three 84d orbital cycles, allowing us to probe phase-locked variations as well as longer-term changes. In the new optical data, the radial velocity variations seem to span a smaller range than previously reported, which might indicate possible biases. The X-ray emission is variable, but without any obvious correlation with orbital phase or Halpha line strength. Furthermore, the average X-ray flux and the relative range of flux variations are similar to those recorded in previous data, although the latter data were taken when the star was less bright and its disk had nearly entirely disappeared. Only the local absorption component in the X-ray spectrum appears to have strengthened in the new data. This absence of large changes in X-ray properties despite dramatic disk changes appears at odds with previous observations of other gamma Cas stars. It also constrains scenarios proposed to explain the gamma Cas phenomenon.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا