Do you want to publish a course? Click here

The MSR Mass and the ${cal O}(Lambda_{rm QCD})$ Renormalon Sum Rule

110   0   0.0 ( 0 )
 Added by Moritz Preisser
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

We provide a detailed description and analysis of a low-scale short-distance mass scheme, called the MSR mass, that is useful for high-precision top quark mass determinations, but can be applied for any heavy quark $Q$. In contrast to earlier low-scale short-distance mass schemes, the MSR scheme has a direct connection to the well known $overline{rm MS}$ mass commonly used for high-energy applications, and is determined by heavy quark on-shell self-energy Feynman diagrams. Indeed, the MSR mass scheme can be viewed as the simplest extension of the $overline{rm MS}$ mass concept to renormalization scales $ll m_Q$. The MSR mass depends on a scale $R$ that can be chosen freely, and its renormalization group evolution has a linear dependence on $R$, which is known as R-evolution. Using R-evolution for the MSR mass we provide details of the derivation of an analytic expression for the normalization of the ${cal O}(Lambda_{rm QCD})$ renormalon asymptotic behavior of the pole mass in perturbation theory. This is referred to as the ${cal O}(Lambda_{rm QCD})$ renormalon sum rule, and can be applied to any perturbative series. The relations of the MSR mass scheme to other low-scale short-distance masses are analyzed as well.



rate research

Read More

In the paper, we analyze the properties of Gross-Llewellyn Smith (GLS) sum rule by using the $mathcal{O}(alpha_s^4)$-order QCD corrections with the help of principle of maximum conformality (PMC). By using the PMC single-scale approach, we obtain an accurate renormalization scale-and-scheme independent fixed-order pQCD contribution for GLS sum rule, e.g. $S^{rm GLS}(Q_0^2=3{rm GeV}^2)|_{rm PMC}=2.559^{+0.023}_{-0.024}$, where the error is squared average of those from $Deltaalpha_s(M_Z)$, the predicted $mathcal{O}(alpha_s^5)$-order terms predicted by using the Pad{e} approximation approach. After applying the PMC, a more convergent pQCD series has been obtained, and the contributions from the unknown higher-order terms are highly suppressed. In combination with the nonperturbative high-twist contribution, our final prediction of GLS sum rule agrees well with the experimental data given by the CCFR collaboration.
66 - Ismail Zahed 2021
We briefly review the key aspect of the QCD instanton vacuum in relation to the quantum breaking of conformal symmetry and the trace anomaly. We use Ji$^prime s$ invariant mass decomposition of the energy momentum tensor together with the trace anomaly, to discuss the mass budget of the nucleon and pion in the QCD instanton vacuum. A measure of the gluon condensate in the nucleon, is a measure of the compressibility of the QCD instanton vacuum as a dilute topological liquid.
We derive a new QCD sum rule for $D(0^+)$ which has only the $Dpi$ continuum with a resonance in the hadron side, using the assumption similar to that has been successfully used in our previous work to the mass of $D_s(0^+)(2317)$. For the value of the pole mass $M_c=1.38 $ GeV as used in the $D_s(0^+)$ case we find that the mass of $D(0^+)$ derived from this sum rule is significantly lower than that derived from the sum rule with the pole approximation. Our result is in agreement with the experimental dada from Belle.
Form factors of the rare $Lambda_{b}(Lambda_{b}^*)to Nell^{+}ell^{-}$ decays are calculated in the framework of the light cone QCD sum rules by taking into account of the contributions from the negative parity baryons. Using the obtained results on the form factors, the branching ratios of the considered decays are estimated. The numerical survey for the branching ratios of the $Lambda_b rar Nell^+ell^- $ and $Lambda_b^ast rar Nell^+ell^- $ decays indicate that these transitions could be measurable in LHCb in near future. Comparison of our predictions on the form factors and branching ratios with those existing in the literature is also performed.
We have studied the charmonium and bottomonium hybrid states with various $J^{PC}$ quantum numbers in QCD sum rules. At leading order in $alpha_s$, the two-point correlation functions have been calculated up to dimension six including the tri-gluon condensate and four-quark condensate. After performing the QCD sum rule analysis, we have confirmed that the dimension six condensates can stabilize the hybrid sum rules and allow the reliable mass predictions. We have updated the mass spectra of the charmonium and bottomonium hybrid states and identified that the negative-parity states with $J^{PC}=(0, 1, 2)^{-+}, 1^{--}$ form the lightest hybrid supermultiplet while the positive-parity states with $J^{PC}=(0, 1)^{+-}, (0, 1, 2)^{++}$ belong to a heavier hybrid supermultiplet.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا