Do you want to publish a course? Click here

A companion on the planet/brown dwarf mass boundary on a wide orbit discovered by gravitational microlensing

110   0   0.0 ( 0 )
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the discovery of a substellar companion to the primary host lens in the microlensing event MOA-2012-BLG-006. The companion-to-host mass ratio is 0.016, corresponding to a companion mass of $approx8~M_{rm Jup} (M_*/0.5M_odot)$. Thus, the companion is either a high-mass giant planet or a low-mass brown dwarf, depending on the mass of the primary $M_*$. The companion signal was separated from the peak of the primary event by a time that was as much as four times longer than the event timescale. We therefore infer a relatively large projected separation of the companion from its host of $approx10~{rm a.u.}(M_*/0.5M_odot)^{1/2}$ for a wide range (3-7 kpc) of host star distances from the Earth. We also challenge a previous claim of a planetary companion to the lens star in microlensing event OGLE-2002-BLG-045.



rate research

Read More

We present an analysis of the anomalous microlensing event, MOA-2010-BLG-073, announced by the Microlensing Observations in Astrophysics survey on 2010-03-18. This event was remarkable because the source was previously known to be photometrically variable. Analyzing the pre-event source lightcurve, we demonstrate that it is an irregular variable over time scales >200d. Its dereddened color, $(V-I)_{S,0}$, is 1.221$pm$0.051mag and from our lens model we derive a source radius of 14.7$pm$1.3 $R_{odot}$, suggesting that it is a red giant star. We initially explored a number of purely microlensing models for the event but found a residual gradient in the data taken prior to and after the event. This is likely to be due to the variability of the source rather than part of the lensing event, so we incorporated a slope parameter in our model in order to derive the true parameters of the lensing system. We find that the lensing system has a mass ratio of q=0.0654$pm$0.0006. The Einstein crossing time of the event, $T_{rm{E}}=44.3$pm$0.1d, was sufficiently long that the lightcurve exhibited parallax effects. In addition, the source trajectory relative to the large caustic structure allowed the orbital motion of the lens system to be detected. Combining the parallax with the Einstein radius, we were able to derive the distance to the lens, $D_L$=2.8$pm$0.4kpc, and the masses of the lensing objects. The primary of the lens is an M-dwarf with $M_{L,p}$=0.16$pm0.03M_{odot}$ while the companion has $M_{L,s}$=11.0$pm2.0M_{rm{J}}$ putting it in the boundary zone between planets and brown dwarfs.
We analyze KMT-2019-BLG-1339, a microlensing event with an obvious but incompletely resolved brief anomaly feature around the peak of the light curve. Although the origin of the anomaly is identified to be a companion to the lens with a low mass ratio $q$, the interpretation is subject to two different degeneracy types. The first type is the ambiguity in $rho$, representing the angular source radius scaled to the angular radius of the Einstein ring, $theta_{rm E}$, and the other is the $sleftrightarrow s^{-1}$ degeneracy. The former type, `finite-source degeneracy, causes ambiguities in both $s$ and $q$, while the latter induces an ambiguity only in $s$. Here $s$ denotes the separation (in units of $theta_{rm E}$) in projection between the lens components. We estimate that the lens components have masses $(M_1, M_2)sim (0.27^{+0.36}_{-0.15}~M_odot, 11^{+16}_{-7}~M_{rm J})$ and $sim (0.48^{+0.40}_{-0.28}~M_odot, 1.3^{+1.1}_{-0.7}~M_{rm J})$ according to the two solutions subject to the finite-source degeneracy, indicating that the lens comprises an M dwarf and a companion with a mass around the planet/brown dwarf boundary or a Jovian-mass planet. It is possible to lift the finite-source degeneracy by conducting future observations utilizing a high resolution instrument because the relative lens-source proper motion predicted by the solutions are widely different.
215 - Niall R Deacon 2016
We present the identification of two previously known young objects in the solar neighbourhood as a likely very wide binary. TYC 9486-927-1, an active, rapidly rotating early-M dwarf, and 2MASS J21265040-8140293, a low-gravity L3 dwarf previously identified as candidate members of the $sim$45 Myr old Tucana Horologium association (TucHor). An updated proper motion measurement of the L3 secondary, and a detailed analysis of the pairs kinematics in the context of known nearby, young stars, reveals that they share common proper motion and are likely bound. New observations and analyses reveal the primary exhibits Li 6708~AA~absorption consistent with M dwarfs younger than TucHor but older than the $sim$10 Myr TW Hydra association yielding an age range of 10-45 Myr. A revised kinematic analysis suggests the space motions and positions of the pair are closer to, but not entirely in agreement with, the $sim$24 Myr old $beta$ Pictoris moving group. This revised 10-45 Myr age range yields a mass range of 11.6--15 M$_J$ for the secondary. It is thus likely 2MASS J21265040-8140293short is the widest orbit planetary mass object known ($>$4500AU) and its estimated mass, age, spectral type, and $T_{eff}$ are similar to the well-studied planet $beta$ Pictoris b. Because of their extreme separation and youth, this low-mass pair provide an interesting case study for very wide binary formation and evolution.
We present the analysis of the binary-lens microlensing event OGLE-2013-BLG-0911. The best-fit solutions indicate the binary mass ratio of q~0.03 which differs from that reported in Shvartzvald+2016. The event suffers from the well-known close/wide degeneracy, resulting in two groups of solutions for the projected separation normalized by the Einstein radius of s~0.15 or s~7. The finite source and the parallax observations allow us to measure the lens physical parameters. The lens system is an M-dwarf orbited by a massive Jupiter companion at very close (M_{host}=0.30^{+0.08}_{-0.06} M_{Sun}, M_{comp}=10.1^{+2.9}_{-2.2} M_{Jup}, a_{exp}=0.40^{+0.05}_{-0.04} au) or wide (M_{host}=0.28^{+0.10}_{-0.08} M_{Sun}, M_{comp}=9.9^{+3.8}_{-3.5}M_{Jup}, a_{exp}=18.0^{+3.2}_{-3.2} au) separation. Although the mass ratio is slightly above the planet-brown dwarf (BD) mass-ratio boundary of q=0.03 which is generally used, the median physical mass of the companion is slightly below the planet-BD mass boundary of 13M_{Jup}. It is likely that the formation mechanisms for BDs and planets are different and the objects near the boundaries could have been formed by either mechanism. It is important to probe the distribution of such companions with masses of ~13M_{Jup} in order to statistically constrain the formation theories for both BDs and massive planets. In particular, the microlensing method is able to probe the distribution around low-mass M-dwarfs and even BDs which is challenging for other exoplanet detection methods.
We present the discovery of a planetary-mass companion to CFHTWIR-Oph 98, a low-mass brown dwarf member of the young Ophiuchus star-forming region, with a wide 200-au separation (1.46 arcsec). The companion was identified using Hubble Space Telescope images, and confirmed to share common proper motion with the primary using archival and new ground-based observations. Based on the very low probability of the components being unrelated Ophiuchus members, we conclude that Oph 98 AB forms a binary system. From our multi-band photometry, we constrain the primary to be an M9-L1 dwarf, and the faint companion to have an L2-L6 spectral type. For a median age of 3 Myr for Ophiuchus, fits of evolutionary models to measured luminosities yield masses of $15.4pm0.8$ M$_mathrm{Jup}$ for Oph 98 A and $7.8pm0.8$ M$_mathrm{Jup}$ for Oph 98 B, with respective effective temperatures of $2320pm40$ K and $1800pm40$ K. For possible system ages of 1-7 Myr, masses could range from 9.6-18.4 M$_mathrm{Jup}$ for the primary, and from 4.1-11.6 M$_mathrm{Jup}$ for the secondary. The low component masses and very large separation make this binary the lowest binding energy system imaged to date, indicating that the outcome of low-mass star formation can result in such extreme, weakly-bound systems. With such a young age, Oph 98 AB extends the growing population of young free-floating planetary-mass objects, offering a new benchmark to refine formation theories at the lowest masses.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا