No Arabic abstract
We report on a lattice QCD calculation of the nucleon axial charge, $g_A$, using M{o}bius Domain-Wall fermions solved on the dynamical $N_f=2+1+1$ HISQ ensembles after they are smeared using the gradient-flow algorithm. The calculation is performed with three pion masses, $m_pisim{310,220,130}$ MeV. Three lattice spacings ($asim{0.15,0.12,0.09}$ fm) are used with the heaviest pion mass, while the coarsest two spacings are used on the middle pion mass and only the coarsest spacing is used with the near physical pion mass. On the $m_pisim220$ MeV, $asim0.12$ fm point, a dedicated volume study is performed with $m_pi L sim {3.22,4.29,5.36}$. Using a new strategy motivated by the Feynman-Hellmann Theorem, we achieve a precise determination of $g_A$ with relatively low statistics, and demonstrable control over the excited state, continuum, infinite volume and chiral extrapolation systematic uncertainties, the latter of which remains the dominant uncertainty. Our final determination at 2.6% total uncertainty is $g_A = 1.278(21)(26)$, with the first uncertainty including statistical and systematic uncertainties from fitting and the second including model selection systematics related to the chiral and continuum extrapolation. The largest reduction of the second uncertainty will come from a greater number of pion mass points as well as more precise lattice QCD results near the physical pion mass.
The nucleon axial charge is calculated as a function of the pion mass in full QCD. Using domain wall valence quarks and improved staggered sea quarks, we present the first calculation with pion masses as light as 354 MeV and volumes as large as (3.5 fm)^3. We show that finite volume effects are small for our volumes and that a constrained fit based on finite volume chiral perturbation theory agrees with experiment within 7% statistical errors.
We report on our calculation of the nucleon axial charge gA in QCD with two flavours of dynamical quarks. A detailed investigation of systematic errors is performed, with a particular focus on contributions from excited states to three-point correlation functions. The use of summed operator insertions allows for a much better control over such contamination. After performing a chiral extrapolation to the physical pion mass, we find gA=1.223 +/- 0.063 (stat) +0.035 -0.060 (syst), in good agreement with the experimental value.
Protons and neutrons have a rich structure in terms of their constituents, the quarks and gluons. Understanding this structure requires solving Quantum Chromodynamics (QCD). However QCD is extremely complicated, so we must numerically solve the equations of QCD using a method known as lattice QCD. Here we describe a typical lattice QCD calculation by examining our recent computation of the nucleon axial charge.
We present results on the nucleon axial form factors within lattice QCD using two flavors of degenerate twisted mass fermions. Volume effects are examined using simulations at two volumes of spatial length $L=2.1$ fm and $L=2.8$ fm. Cut-off effects are investigated using three different values of the lattice spacings, namely $a=0.089$ fm, $a=0.070$ fm and $a=0.056$ fm. The nucleon axial charge is obtained in the continuum limit and chirally extrapolated to the physical pion mass enabling comparison with experiment.
The nucleon axial form factor is a dominant contribution to errors in neutrino oscillation studies. Lattice QCD calculations can help control theory errors by providing first-principles information on nucleon form factors. In these proceedings, we present preliminary results on a blinded calculation of $g_A$ and the axial form factor using HISQ staggered baryons with 2+1+1 flavors of sea quarks. Calculations are done using physical light quark masses and are absolutely normalized. We discuss fitting form factor data with the model-independent $z$ expansion parametrization.