The nucleon axial form factor is a dominant contribution to errors in neutrino oscillation studies. Lattice QCD calculations can help control theory errors by providing first-principles information on nucleon form factors. In these proceedings, we present preliminary results on a blinded calculation of $g_A$ and the axial form factor using HISQ staggered baryons with 2+1+1 flavors of sea quarks. Calculations are done using physical light quark masses and are absolutely normalized. We discuss fitting form factor data with the model-independent $z$ expansion parametrization.
We present results on the nucleon axial form factors within lattice QCD using two flavors of degenerate twisted mass fermions. Volume effects are examined using simulations at two volumes of spatial length $L=2.1$ fm and $L=2.8$ fm. Cut-off effects are investigated using three different values of the lattice spacings, namely $a=0.089$ fm, $a=0.070$ fm and $a=0.056$ fm. The nucleon axial charge is obtained in the continuum limit and chirally extrapolated to the physical pion mass enabling comparison with experiment.
We report on a lattice QCD calculation of the nucleon axial charge, $g_A$, using M{o}bius Domain-Wall fermions solved on the dynamical $N_f=2+1+1$ HISQ ensembles after they are smeared using the gradient-flow algorithm. The calculation is performed with three pion masses, $m_pisim{310,220,130}$ MeV. Three lattice spacings ($asim{0.15,0.12,0.09}$ fm) are used with the heaviest pion mass, while the coarsest two spacings are used on the middle pion mass and only the coarsest spacing is used with the near physical pion mass. On the $m_pisim220$ MeV, $asim0.12$ fm point, a dedicated volume study is performed with $m_pi L sim {3.22,4.29,5.36}$. Using a new strategy motivated by the Feynman-Hellmann Theorem, we achieve a precise determination of $g_A$ with relatively low statistics, and demonstrable control over the excited state, continuum, infinite volume and chiral extrapolation systematic uncertainties, the latter of which remains the dominant uncertainty. Our final determination at 2.6% total uncertainty is $g_A = 1.278(21)(26)$, with the first uncertainty including statistical and systematic uncertainties from fitting and the second including model selection systematics related to the chiral and continuum extrapolation. The largest reduction of the second uncertainty will come from a greater number of pion mass points as well as more precise lattice QCD results near the physical pion mass.
Protons and neutrons have a rich structure in terms of their constituents, the quarks and gluons. Understanding this structure requires solving Quantum Chromodynamics (QCD). However QCD is extremely complicated, so we must numerically solve the equations of QCD using a method known as lattice QCD. Here we describe a typical lattice QCD calculation by examining our recent computation of the nucleon axial charge.
We report a calculation of the nucleon axial form factors $G_A^q(Q^2)$ and $G_P^q(Q^2)$ for all three light quark flavors $qin{u,d,s}$ in the range $0leq Q^2lesssim 1.2text{ GeV}^2$ using lattice QCD. This work was done using a single ensemble with pion mass 317 MeV and made use of the hierarchical probing technique to efficiently evaluate the required disconnected loops. We perform nonperturbative renormalization of the axial current, including a nonperturbative treatment of the mixing between light and strange currents due to the singlet-nonsinglet difference caused by the axial anomaly. The form factor shapes are fit using the model-independent $z$ expansion. From $G_A^q(Q^2)$, we determine the quark contributions to the nucleon spin and axial radii. By extrapolating the isovector $G_P^{u-d}(Q^2)$, we obtain the induced pseudoscalar coupling relevant for ordinary muon capture and the pion-nucleon coupling constant. We find that the disconnected contributions to $G_P$ form factors are large, and give an interpretation based on the dominant influence of the pseudoscalar poles in these form factors.
We present a new analysis method that allows one to understand and model excited state contributions in observables that are dominated by a pion pole. We apply this method to extract axial and (induced) pseudoscalar nucleon isovector form factors, which satisfy the constraints due to the partial conservation of the axial current up to expected discretization effects. Effective field theory predicts that the leading contribution to the (induced) pseudoscalar form factor originates from an exchange of a virtual pion, and thus exhibits pion pole dominance. Using our new method, we can recover this behavior directly from lattice data. The numerical analysis is based on a large set of ensembles generated by the CLS effort, including physical pion masses, large volumes (with up to $96^3 times 192$ sites and $L m_pi = 6.4$), and lattice spacings down to $0.039 , text{fm}$, which allows us to take all the relevant limits. We find that some observables are much more sensitive to the choice of parametrization of the form factors than others. On the one hand, the $z$-expansion leads to significantly smaller values for the axial dipole mass than the dipole ansatz ($M_A^{text{$z$-exp}}=1.02(10) , text{GeV}$ versus $M_A^{text{dipole}} = 1.31(8) , text{GeV}$). On the other hand, we find that the result for the induced pseudoscalar coupling at the muon capture point is almost independent of the choice of parametrization ($g_P^{star text{$z$-exp}} = 8.68(45)$ and $g_P^{star text{dipole}} = 8.30(24)$), and is in good agreement with both, chiral perturbation theory predictions and experimental measurement via ordinary muon capture. We also determine the axial coupling constant $g_A$.
Aaron S. Meyer
,Richard J. Hill
,Andreas S. Kronfeld
.
(2016)
.
"Calculation of the Nucleon Axial Form Factor Using Staggered Lattice QCD"
.
Aaron Meyer
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا