We study the two-body scattering problem in the zero-range approximation with a sinusoidally driven scattering length and calculate the relation between the mean value and amplitude of the drive for which the effective scattering amplitude is resonantly enhanced. In this manner we arrive at a family of curves along which the effective scattering length diverges but the nature of the corresponding Floquet-induced resonance changes from narrow to wide. Remarkably, on these curves the driving does not induce heating. In order to study the effect of these resonances on the three-body problem we consider one light and two heavy particles with driven heavy-light interaction in the Born-Oppenheimer approximation and find that the Floquet driving can be used to tune the three-body and inelasticity parameters.
We solve the three-boson problem with contact two- and three-body interactions in one dimension and analytically calculate the ground and excited trimer-state energies. Then, by using the diffusion Monte Carlo technique we calculate the binding energy of three dimers formed in a one-dimensional Bose-Bose or Fermi-Bose mixture with attractive interspecies and repulsive intraspecies interactions. Combining these results with our three-body analytics we extract the three-dimer scattering length close to the dimer-dimer zero crossing. In both considered cases the three-dimer interaction turns out to be repulsive. Our results constitute a concrete proposal for obtaining a one-dimensional gas with a pure three-body repulsion.
We derive an integral equation describing $N$ two-dimensional bosons with zero-range interactions and solve it for the ground state energy $B_N$ by applying a stochastic diffusion Monte Carlo scheme for up to 26 particles. We confirm and go beyond the scaling $B_Npropto 8.567^N$ predicted by Hammer and Son [Phys. Rev. Lett. {bf 93}, 250408 (2004)] in the large-$N$ limit.
When the binding energy of a two-body system goes to zero the two-body system shows a continuous scaling invariance governed by the large value of the scattering length. In the case of three identical bosons, the three-body system in the same limit shows the Efimov effect and the scale invariance is broken to a discrete scale invariance. As the number of bosons increases correlations appear between the binding energy of the few- and many-body systems. We discuss some of them as the relation between the saturation properties of the infinite system and the low-energy properties of the few-boson system.
Trapped Rydberg ions represent a flexible platform for quantum simulation and information processing which combines a high degree of control over electronic and vibrational degrees of freedom. The possibility to individually excite ions to high-lying Rydberg levels provides a system where strong and long-range interactions between pairs of excited ions can be engineered and tuned via external laser fields. We show that the coupling between Rydberg pair interactions and collective motional modes gives rise to effective long-range multi-body interactions, consisting of two, three, and four-body terms. Their shape, strength, and range can be controlled via the ion trap parameters and strongly depends on both the equilibrium configuration and vibrational modes of the ion crystal. By focusing on an experimentally feasible quasi one-dimensional setup of $ {}^{88}mathrm{Sr}^+ $ Rydberg ions, we demonstrate that multi-body interactions are enhanced by the emergence of a soft mode associated, e.g., with a structural phase transition. This has a striking impact on many-body electronic states and results, for example, in a three-body anti-blockade effect. Our study shows that trapped Rydberg ions offer new opportunities to study exotic many-body quantum dynamics driven by enhanced multi-body interactions.
We employ the (dynamical) density matrix renormalization group technique to investigate the ground-state properties of the Bose-Hubbard model with nearest-neighbor transfer amplitudes t and local two-body and three-body repulsion of strength U and W, respectively. We determine the phase boundaries between the Mott-insulating and superfluid phases for the lowest two Mott lobes from the chemical potentials. We calculate the tips of the Mott lobes from the Tomonaga-Luttinger liquid parameter and confirm the positions of the Kosterlitz-Thouless points from the von Neumann entanglement entropy. We find that physical quantities in the second Mott lobe such as the gap and the dynamical structure factor scale almost perfectly in t/(U+W), even close to the Mott transition. Strong-coupling perturbation theory shows that there is no true scaling but deviations from it are quantitatively small in the strong-coupling limit. This observation should remain true in higher dimensions and for not too large attractive three-body interactions.