Do you want to publish a course? Click here

Long-range multi-body interactions and three-body anti-blockade in a trapped Rydberg ion chain

100   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Trapped Rydberg ions represent a flexible platform for quantum simulation and information processing which combines a high degree of control over electronic and vibrational degrees of freedom. The possibility to individually excite ions to high-lying Rydberg levels provides a system where strong and long-range interactions between pairs of excited ions can be engineered and tuned via external laser fields. We show that the coupling between Rydberg pair interactions and collective motional modes gives rise to effective long-range multi-body interactions, consisting of two, three, and four-body terms. Their shape, strength, and range can be controlled via the ion trap parameters and strongly depends on both the equilibrium configuration and vibrational modes of the ion crystal. By focusing on an experimentally feasible quasi one-dimensional setup of $ {}^{88}mathrm{Sr}^+ $ Rydberg ions, we demonstrate that multi-body interactions are enhanced by the emergence of a soft mode associated, e.g., with a structural phase transition. This has a striking impact on many-body electronic states and results, for example, in a three-body anti-blockade effect. Our study shows that trapped Rydberg ions offer new opportunities to study exotic many-body quantum dynamics driven by enhanced multi-body interactions.



rate research

Read More

We study interactions between polaritons, arising when photons strongly couple to collective excitations in an array of two-level atoms trapped in an optical lattice inside a cavity. We consider two types of interactions between atoms: Dipolar forces and atomic saturability, which ranges from hard-core repulsion to Rydberg blockade. We show that, in spite of the underlying repulsion in the subsystem of atomic excitations, saturability induces a broadband bunching of photons for two-polariton scattering states. We interpret this bunching as a result of interference, and trace it back to the mismatch of the quantization volumes for atomic excitations and photons. We examine also bound bipolaritonic states: These include states created by dipolar forces, as well as a gap bipolariton, which forms solely due to saturability effects in the atomic transition. Both types of bound states exhibit strong bunching in the photonic component. We discuss the dependence of bunching on experimentally relevant parameters.
Alkaline-earth (AE) atoms have metastable clock states with minute-long optical lifetimes, high-spin nuclei, and SU($N$)-symmetric interactions that uniquely position them for advancing atomic clocks, quantum information processing, and quantum simulation. The interplay of precision measurement and quantum many-body physics is beginning to foster an exciting scientific frontier with many opportunities. Few particle systems provide a window to view the emergence of complex many-body phenomena arising from pairwise interactions. Here, we create arrays of isolated few-body systems in a fermionic ${}^{87}$Sr three-dimensional (3D) optical lattice clock and use high resolution clock spectroscopy to directly observe the onset of both elastic and inelastic multi-body interactions. These interactions cannot be broken down into sums over the underlying pairwise interactions. We measure particle-number-dependent frequency shifts of the clock transition for atom numbers $n$ ranging from 1 to 5, and observe nonlinear interaction shifts, which are characteristic of SU($N$)-symmetric elastic multi-body effects. To study inelastic multi-body effects, we use these frequency shifts to isolate $n$-occupied sites and measure the corresponding lifetimes. This allows us to access the short-range few-body physics free from systematic effects encountered in a bulk gas. These measurements, combined with theory, elucidate an emergence of multi-body effects in few-body systems of sites populated with ground-state atoms and those with single electronic excitations. By connecting these few-body systems through tunneling, the favorable energy and timescales of the interactions will allow our system to be utilized for studies of high-spin quantum magnetism and the Kondo effect.
Over the last decade, systems of individually-controlled neutral atoms, interacting with each other when excited to Rydberg states, have emerged as a promising platform for quantum simulation of many-body problems, in particular spin systems. Here, we review the techniques underlying quantum gas microscopes and arrays of optical tweezers used in these experiments, explain how the different types of interactions between Rydberg atoms allow a natural mapping onto various quantum spin models, and describe recent results that were obtained with this platform to study quantum many-body physics.
We have analyzed our recently-measured three-body loss rate coefficient for a Bose-Einstein condensate of spin-polarized metastable triplet 4He atoms in terms of Efimov physics. The large value of the scattering length for these atoms, which provides access to the Efimov regime, arises from a nearby potential resonance. We find the loss coefficient to be consistent with the three-body parameter (3BP) found in alkali-metal experiments, where Feshbach resonances are used to tune the interaction. This provides new evidence for a universal 3BP, the first outside the group of alkali-metal elements. In addition, we give examples of other atomic systems without Feshbach resonances but with a large scattering length that would be interesting to analyze once precise measurements of three-body loss are available.
The strong interaction between Rydberg atoms can be used to control the strength and character of the interatomic interaction in ultracold gases by weakly dressing the atoms with a Rydberg state. Elaborate theoretical proposals for the realization of various complex phases and applications in quantum simulation exist. Also a simple model has been already developed that describes the basic idea of Rydberg dressing in a two-atom basis. However, an experimental realization has been elusive so far. We present a model describing the ground state of a Bose-Einstein condensate dressed with a Rydberg level based on the Rydberg blockade. This approach provides an intuitive understanding of the transition from pure twobody interaction to a regime of collective interactions. Furthermore it enables us to calculate the deformation of a three-dimensional sample under realistic experimental conditions in mean-field approximation. We compare full three-dimensional numerical calculations of the ground state to an analytic expression obtained within Thomas-Fermi approximation. Finally we discuss limitations and problems arising in an experimental realization of Rydberg dressing based on our experimental results. Our work enables the reader to straight forwardly estimate the experimental feasibility of Rydberg dressing in realistic three-dimensional atomic samples.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا