No Arabic abstract
Strain engineering is a very effective method to continuously tune the electronic, topological, optical and thermoelectric properties of materials. In this work, strain-dependent phonon transport of recently-fabricated antimonene (Sb monolayer) under biaxial strain is investigated from a combination of first-principles calculations and the linearized phonon Boltzmann equation. It is found that the ZA dispersion of antimonene with strain less than -1% gives imaginary frequencies, which suggests that compressive strain can induce structural instability. Experimentally, it is possible to enhance structural stability by tensile strain. Calculated results show that lattice thermal conductivity increases with strain changing from -1% to 6%, and lattice thermal conductivity at 6% strain is 5.6 times larger than that at -1% strain at room temperature. It is interesting that lattice thermal conductivity is in inverse proportion to buckling parameter $h$ in considered strain range. Such a strain dependence of lattice thermal conductivity is attributed to enhanced phonon lifetimes caused by increased strain, while group velocities have a decreased effect on lattice thermal conductivity with increasing strain. It is found that acoustic branches dominate the lattice thermal conductivity over the full strain range. The cumulative room-temperature lattice thermal conductivity at -1% strain converges to maximum with phonon mean free path (MFP) at 50 nm, while one at 6% strain becomes as large as 44 $mathrm{mu m}$, which suggests that strain can give rise to very strong size effects on lattice thermal conductivity in antimonene. These results may provide guidance on fabrication techniques of antimonene, and offer perspectives on tuning lattice thermal conductivity by size and strain for applications of thermal management and thermoelectricity.
Using first-principles pseudopotential method and Boltzmann transport theory, we give a comprehensive understanding of the electronic and phonon transport properties of thermoelectric material BiCuSeO. By choosing proper hybrid functional for the exchange-correlation energy, we find that the system is semiconducting with a direct band gap of ~0.8 eV, which is quite different from those obtained previously using standard functionals. Detailed analysis of a three-dimensional energy band structure indicates that there is a valley degeneracy of eight around the valence band maximum, which leads to a sharp density of states and is responsible for a large p-type Seebeck coefficient. Moreover, we find that the density of states effective masses are much larger and results in very low hole mobility of BiCuSeO. On the other hand, we find larger atomic displacement parameters for the Cu atoms, which indicates that the stronger anharmonicity of BiCuSeO may originate from the rattling behavior of Cu instead of previously believed Bi atoms.
It is generally assumed in the thermoelectric community that the lattice thermal conductivity of a given material is independent of the electronic properties. This perspective is however questionable since the electron-phonon coupling could have certain effects on both the carrier and phonon transport, which in turn will affect the thermoelectric properties. Using SiGe compound as a prototypical example, we give an accurate prediction of the carrier relaxation time by considering scattering from all the phonon modes, as opposed to the simple deformation potential theory. It is found that the carrier relaxation time does not change much with the concentration, which is however not the case for the phonon transport where the lattice thermal conductivity can be significantly reduced by electron-phonon coupling at higher carrier concentration. As a consequence, the figure-of-merit of SiGe compound is obviously enhanced at optimized carrier concentration, and becomes more pronounced at elevated temperature.
Transparent oxide materials, such as $CuAlO_{2}$, a p-type transparent conducting oxide (TCO), have recently been studied for high temperature thermoelectric power generators and coolers for waste heat. TCO materials are generally low cost and non-toxic. The potential to engineer them through strain and nano-structuring are two promising avenues toward continuously tuning the electronic and thermal properties to achieve high zT values and low cost/kW-hr devices. In this work, the strain-dependent lattice thermal conductivity of 2H $CuAlO_{2}$ is computed by solving the phonon Boltzmann transport equation with interatomic force constants extracted from first-principles calculations. While the average bulk thermal conductivity is around 32 W/(K-m) at room temperature, it drops to between 5-15 W/(K-m) for typical experimental grain sizes from 3nm to 30nm at room temperature. We find that strain can offer both an increase as well as a decrease in the thermal conductivity as expected, however the overall inclusion of small grain sizes dictates the potential for low thermal conductivity in this material.
We develop a method for calculating the electron-phonon vertex in polar semiconductors and insulators from first principles. The present formalism generalizes the Frohlich vertex to the case of anisotropic materials and multiple phonon branches, and can be used either as a post-processing correction to standard electron-phonon calculations, or in conjunction with {it ab initio} interpolation based on maximally localized Wannier functions. We demonstrate this formalism by investigating the electron-phonon interactions in anatase TiO$_2$, and show that the polar vertex significantly reduces the electron lifetimes and enhances the anisotropy of the coupling. The present work enables {it ab initio} calculations of carrier mobilities, lifetimes, mass enhancement, and pairing in polar materials.
The bulk photovoltaic effect (BPVE) refers to current generation due to illumination by light in a homogeneous bulk material lacking inversion symmetry. In addition to the intensively studied shift current, the ballistic current, which originates from asymmetric carrier generation due to scattering processes, also constitutes an important contribution to the overall kinetic model of the BPVE. In this letter, we use a perturbative approach to derive a formula for the ballistic current resulting from the intrinsic electron-phonon scattering in a form amenable to first-principles calculation. We then implement the theory and calculate the ballistic current of the prototypical BPVE material ch{BaTiO3} using quantum-mechanical density functional theory. The magnitude of the ballistic current is comparable to that of shift current, and the total spectrum (shift plus ballistic) agrees well with the experimentally measured photocurrents. Furthermore, we show that the ballistic current is sensitive to structural change, which could benefit future photovoltaic materials design.