Do you want to publish a course? Click here

Efficient Computation of Sparse Matrix Functions for Large-Scale Electronic Structure Calculations: The CheSS Library

81   0   0.0 ( 0 )
 Added by Stephan Mohr
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present CheSS, the Chebyshev Sparse Solvers library, which has been designed to solve typical problems arising in large-scale electronic structure calculations using localized basis sets. The library is based on a flexible and efficient expansion in terms of Chebyshev polynomials and presently features the calculation of the density matrix, the calculation of matrix powers for arbitrary powers, and the extraction of eigenvalues in a selected interval. CheSS is able to exploit the sparsity of the matrices and scales linearly with respect to the number of nonzero entries, making it well-suited for large-scale calculations. The approach is particularly adapted for setups leading to small spectral widths of the involved matrices and outperforms alternative methods in this regime. By coupling CheSS to the DFT code BigDFT, we show that such a favorable setup is indeed possible in practice. In addition, the approach based on Chebyshev polynomials can be massively parallelized, and CheSS exhibits excellent scaling up to thousands of cores even for relatively small matrix sizes.



rate research

Read More

Coupled cluster Greens function (GFCC) calculation has drawn much attention in the recent years for targeting the molecular and material electronic structure problems from a many body perspective in a systematically improvable way. However, GFCC calculations on scientific computing clusters usually suffer from expensive higher dimensional tensor contractions in the complex space, expensive interprocess communication, and severe load imbalance, which limits its routine use for tackling electronic structure problems. Here we present a numerical library prototype that is specifically designed for large scale GFCC calculations. The design of the library is focused on a systematically optimal computing strategy to improve its scalability and efficiency. The performance of the library is demonstrated by the relevant profiling analysis of running GFCC calculations on remote giant computing clusters. The capability of the library is highlighted by computing a wide near valence band of a fullerene C60 molecule for the first time at the GFCCSD level that shows excellent agreement with the experimental spectrum.
There are many ways to numerically represent of chemical systems in order to compute their electronic structure. Basis functions may be localized in real-space (atomic orbitals), in momentum-space (plane waves), or in both components of phase-space. Such phase-space localized basis functions in the form of wavelets, have been used for many years in electronic structure. In this paper, we turn to a phase-space localized basis set first introduced by K. G. Wilson. We provide the first full study of this basis and its numerical implementation. To calculate electronic energies of a variety of small molecules and states, we utilize the sum-of-products form, Gaussian quadratures, and introduce methods for selecting sample points from a grid of phase-space localized Wilson basis. Both full configuration interaction and Hartree-Fock implementations are discussed and implemented numerically. As with many grid based methods, describing both tightly bound and diffuse orbitals is challenging so we have considered augmenting the Wilson basis set as projected Slater-type orbitals. We have also compared the Wilson basis set against the recently introduced wavelet transformed Gaussians (gausslets). Throughout, we give comments on the implementation and use small atoms and molecules to illustrate convergence properties of the Wilson basis.
The solvation model proposed by Fattebert and Gygi [Journal of Computational Chemistry 23, 662 (2002)] and Scherlis et al. [Journal of Chemical Physics 124, 074103 (2006)] is reformulated, overcoming some of the numerical limitations encountered and extending its range of applicability. We first recast the problem in terms of induced polarization charges that act as a direct mapping of the self-consistent continuum dielectric; this allows to define a functional form for the dielectric that is well behaved both in the high-density region of the nuclear charges and in the low-density region where the electronic wavefunctions decay into the solvent. Second, we outline an iterative procedure to solve the Poisson equation for the quantum fragment embedded in the solvent that does not require multi-grid algorithms, is trivially parallel, and can be applied to any Bravais crystallographic system. Last, we capture some of the non-electrostatic or cavitation terms via a combined use of the quantum volume and quantum surface [Physical Review Letters 94, 145501 (2005)] of the solute. The resulting self-consistent continuum solvation (SCCS) model provides a very effective and compact fit of computational and experimental data, whereby the static dielectric constant of the solvent and one parameter allow to fit the electrostatic energy provided by the PCM model with a mean absolute error of 0.3 kcal/mol on a set of 240 neutral solutes. Two parameters allow to fit experimental solvation energies on the same set with a mean absolute error of 1.3 kcal/mol. A detailed analysis of these results, broken down along different classes of chemical compounds, shows that several classes of organic compounds display very high accuracy, with solvation energies in error of 0.3-0.4 kcal/mol, whereby larger discrepancies are mostly limited to self-dissociating species and strong hydrogen-bond forming compounds.
We describe a novel iterative strategy for Kohn-Sham density functional theory calculations aimed at large systems (> 1000 electrons), applicable to metals and insulators alike. In lieu of explicit diagonalization of the Kohn-Sham Hamiltonian on every self-consistent field (SCF) iteration, we employ a two-level Chebyshev polynomial filter based complementary subspace strategy to: 1) compute a set of vectors that span the occupied subspace of the Hamiltonian; 2) reduce subspace diagonalization to just partially occupied states; and 3) obtain those states in an efficient, scalable manner via an inner Chebyshev-filter iteration. By reducing the necessary computation to just partially occupied states, and obtaining these through an inner Chebyshev iteration, our approach reduces the cost of large metallic calculations significantly, while eliminating subspace diagonalization for insulating systems altogether. We describe the implementation of the method within the framework of the Discontinuous Galerkin (DG) electronic structure method and show that this results in a computational scheme that can effectively tackle bulk and nano systems containing tens of thousands of electrons, with chemical accuracy, within a few minutes or less of wall clock time per SCF iteration on large-scale computing platforms. We anticipate that our method will be instrumental in pushing the envelope of large-scale ab initio molecular dynamics. As a demonstration of this, we simulate a bulk silicon system containing 8,000 atoms at finite temperature, and obtain an average SCF step wall time of 51 seconds on 34,560 processors; thus allowing us to carry out 1.0 ps of ab initio molecular dynamics in approximately 28 hours (of wall time).
We present the implementation of an electronic-structure approach dedicated to ionization dynamics of molecules interacting with x-ray free-electron laser (XFEL) pulses. In our scheme, molecular orbitals for molecular core-hole states are represented by linear combination of numerical atomic orbitals that are solutions of corresponding atomic core-hole states. We demonstrate that our scheme efficiently calculates all possible multiple-hole configurations of molecules formed during XFEL pulses. The present method is suitable to investigate x-ray multiphoton multiple ionization dynamics and accompanying nuclear dynamics, providing essential information on the chemical dynamics relevant for high-intensity x-ray imaging.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا