No Arabic abstract
Motivated by the recent experiments indicating superconductivity in metal-decorated graphene sheets, we investigate their quasi-particle structure within the framework of an effective tight-binding Hamiltonian augmented by appropriate BCS-like pairing terms for p-type order parameter. The normal state band structure of graphene is modified not only through interaction with adsorbed metal atoms, but also due to the folding of bands at Brillouin zone boundaries resulting from a $sqrt{3}timessqrt{3}R30^{circ}$ reconstruction. Several different types of pairing symmetries are analyzed utilizing Nambu-Gorkov Greens function techniques to show that $p+ip$-symmetric nearest-neighbor pairing yields the most enhanced superconducting gap. The character of the order parameter depends on the nature of the atomic orbitals involved in the pairing process and exhibits interesting angular and radial asymmetries. Finally, we suggest a method to distinguish between singlet and triplet type superconductivity in the presence of magnetic substitutional impurities using scanning tunneling spectroscopy.
The symmetry operations of the crystal groups relevant for the high temperature superconductors HgBa2CuO4+x (Hg1201), YBa2Cu3O7-x (YBCO), and Bi2Sr2CaCu2O8+x (BSCCO) are elucidated. The allowable combinations of the superconducting order parameter (OP) components are presented for both the angular momentum and lattice representations. For tetragonal Hg1201, the spin singlet OP components are composed from four sets of compatible basis functions, which combine to give the generalized s-, dx2-y2-, dxy-, and gxy(x2-y2)- wave OPs. In YBCO, elements of s- and dx2-y2- wave sets are compatible, but in BSCCO, elements of s- and dxy- wave sets are compatible. The Josephson critical current density JcJ across c-axis twist junctions in the vicinity of Tc is then evaluated as a function of the twist angle phi0, for each allowable OP combination, for both coherent and incoherent tunneling. Recent experiments of Li et al. demonstrated the independence of JcJ(phi0)/JcS upon phi0 at and below Tc, where JcS is the critical current density of a constituent single crystal. These experiments are shown to be consistent with an OP containing an s-wave component, but inconsistent with an OP containing the purported dx2-y2-wave component. In addition, they demonstrate that the interlayer tunneling across untwisted layers in single crystal BSCCO is entirely incoherent. We propose a new type of tricrystal experiment using single crystal c-axis twist junctions, that does not employ substrate grain boundaries.
Using typical experimental techniques it is difficult to separate the effects of carrier density and disorder on the superconducting transition in two dimensions. Using a simple fabrication procedure based on metal layer dewetting, we have produced graphene sheets decorated with a non-percolating network of nanoscale tin clusters. These metal clusters both efficiently dope the graphene substrate and induce long-range superconducting correlations. This allows us to study the superconducting transition at fixed disorder and variable carrier concentration. We find that despite structural inhomogeneity on mesoscopic length scales (10-100 nm), this material behaves electronically as a homogenous dirty superconductor. Our simple self-assembly method establishes graphene as an ideal tunable substrate for studying induced two-dimensional electronic systems at fixed disorder and our technique can readily be extended to other order parameters such as magnetism.
The discovery of superconductivity at 203K in SH$_3$ is an important step toward higher values of $T_c$. Predictions based on state-of-the-art DFT for the electronic structure, including one preceding experimental confirmation, showed the mechanism to be the electron-phonon interaction. This was confirmed in optical spectroscopy measurements. For photon energies between $sim 450$ and 600 meV in SH$_3$, the reflectance in the superconducting state is below that in its normal state. This difference decreases as $T$ approaches $T_c$. Decreasing absorption with increasing $T$ is opposite to what is expected in ordinary metals. Such an anomalous behavior can be traced back to the energy dependence of the superconducting density of states which is highly peaked at the energy gap value $Delta$ but decays back to the constant normal state value as energy is increased, on a scale of a few $Delta$, or by increasing $T$ towards $T=T_c$. The process of phonon-assisted optical absorption is encoded with a knowledge of the $T$-dependence of $Delta$, the order parameter of the superconducting state. Should the energy of the phonon involved be very large, of order 200 meV or more, this process offers the possibility of observing the closing of the superconducting order parameter with $T$ at correspondingly very large energies. The very recent experimental observation of a $T_csimeq 250$ K in LaH$_{10}$ has further heightened interest in the hydrides. We compare the relevant phonon structure seen in optics with related features in the real and imaginary part of the frequency dependent gap, quasiparticle density of states, reflectance, absorption, and optical scattering rate. The phonon structures all carry information on the $T_c$ value and the $T$-dependence of the order parameter, and can be used to confirm that the mechanism involved in superconductivity is the electron-phonon interaction.
We have performed a detailed study of the conductance characteristics obtained by point contact junctions realized between a normal Pt/Ir tip and syntered RuSr2GdCu2O8 (Ru-1212) samples. Indeed, this compound is subject of great interest due to the coexistence of both magnetic order and bulk superconductivity. In our experiments, the low temperature tunneling spectra reproducibly show a zero bias conductance peak that can be well reproduced by a generalized BTK model in the case of d-wave symmetry of the superconducting order parameter.
Spin filter superconducting S/I/N tunnel junctions (NbN/GdN/TiN) show a robust and pronounced zero bias conductance peak at low temperatures, the magnitude of which is several times the normal state conductance of the junction. Such a conductance anomaly is representative of unconventional superconductivity and is interpreted as a direct signature of an odd frequency superconducting order.