No Arabic abstract
The discovery of superconductivity at 203K in SH$_3$ is an important step toward higher values of $T_c$. Predictions based on state-of-the-art DFT for the electronic structure, including one preceding experimental confirmation, showed the mechanism to be the electron-phonon interaction. This was confirmed in optical spectroscopy measurements. For photon energies between $sim 450$ and 600 meV in SH$_3$, the reflectance in the superconducting state is below that in its normal state. This difference decreases as $T$ approaches $T_c$. Decreasing absorption with increasing $T$ is opposite to what is expected in ordinary metals. Such an anomalous behavior can be traced back to the energy dependence of the superconducting density of states which is highly peaked at the energy gap value $Delta$ but decays back to the constant normal state value as energy is increased, on a scale of a few $Delta$, or by increasing $T$ towards $T=T_c$. The process of phonon-assisted optical absorption is encoded with a knowledge of the $T$-dependence of $Delta$, the order parameter of the superconducting state. Should the energy of the phonon involved be very large, of order 200 meV or more, this process offers the possibility of observing the closing of the superconducting order parameter with $T$ at correspondingly very large energies. The very recent experimental observation of a $T_csimeq 250$ K in LaH$_{10}$ has further heightened interest in the hydrides. We compare the relevant phonon structure seen in optics with related features in the real and imaginary part of the frequency dependent gap, quasiparticle density of states, reflectance, absorption, and optical scattering rate. The phonon structures all carry information on the $T_c$ value and the $T$-dependence of the order parameter, and can be used to confirm that the mechanism involved in superconductivity is the electron-phonon interaction.
The long-sought goal of room-temperature superconductivity has reportedly recently been realized in a carbonaceous sulfur hydride compound under high pressure, as reported by Snider et al. [1]. The evidence presented in that paper is stronger than in other similar recent reports of high temperature superconductivity in hydrides under high pressure [2-7], and has been received with universal acclaim [8-10]. Here we point out that features of the experimental data shown in Ref. [1] indicate that the phenomenon observed in that material is not superconductivity. This observation calls into question earlier similar claims of high temperature conventional superconductivity in hydrides under high pressure based on similar or weaker evidence [2-7].
Due to its low atomic mass hydrogen is the most promising element to search for high-temperature phononic superconductors. However, metallic phases of hydrogen are only expected at extreme pressures (400 GPa or higher). The measurement of a record superconducting critical temperature of 190 K in a hydrogen-sulfur compound at 200 GPa of pressure[1], shows that metallization of hydrogen can be reached at significantly lower pressure by inserting it in the matrix of other elements. In this work we re-investigate the phase diagram and the superconducting properties of the H-S system by means of minima hopping method for structure prediction and Density Functional theory for superconductors. We also show that Se-H has a similar phase diagram as its sulfur counterpart as well as high superconducting critical temperature. We predict SeH3 to exceed 120 K superconductivity at 100 GPa. We show that both SeH3 and SH3, due to the critical temperature and peculiar electronic structure, present rather unusual superconducting properties.
The discovery of high-temperature conventional superconductivity in H3S with a critical temperature of Tc=203 K was followed by the recent record of Tc ~250 K in the face-centered cubic (fcc) lanthanum hydride LaH10 compound. It was realized in a new class of hydrogen-dominated compounds having a clathrate-like crystal structure in which hydrogen atoms form a 3D framework and surround a host atom of rare earth elements. Yttrium hydrides are predicted to have even higher Tc exceeding room temperature. In this paper, we synthesized and refined the crystal structure of new hydrides: YH4, YH6, and YH9 at pressures up to 237 GPa finding that YH4 crystalizes in the I4/mmm lattice, YH6 in Im-3m lattice and YH9 in P63/mmc lattice in excellent agreement with the calculations. The observed very high-temperature superconductivity is comparable to that found in fcc-LaH10: the pressure dependence of Tc for YH9 also displays a dome like shape with the highest Tc of 243 K at 201 GPa. We also observed a Tc of 227 K at 237 GPa for the YH6 phase. However, the measured Tcs are notably lower by ~30 K than predicted. Evidence for superconductivity includes the observation of zero electrical resistance, a decrease of Tc under an external magnetic field and an isotope effect. The theoretically predicted fcc YH10 with the promising highest Tc>300 K was not stabilized in our experiments under pressures up to 237 GPa.
We present a new technique for measuring the critical temperature Tc in the high pressure, high Tc electron-phonon-driven superconducting hydrides. This technique does not require connecting leads to the sample. In the multiphonon region of the absorption spectrum, the reflectance mirrors the temperature variation of the superconducting order parameter. For an appropriately chosen value of photon energy of order twice the gap plus 1.5 times the maximum phonon energy, the temperature dependence of the reflectance varies much more rapidly below T=Tc than above. It increases with increasing temperature in the superconducting state while it decreases in the normal state. Examining the temperature dependence of the reflectance at a fixed photon energy, there is a cusp at T=Tc which provides a measurement of the critical temperature. We discuss these issues within the context of the recently observed metallic phase of hydrogen.
The recent discovery of superconductivity at 190~K in highly compressed H$_{2}$S is spectacular not only because it sets a record high critical temperature, but because it does so in a material that appears to be, and we argue here that it is, a conventional strong-coupling BCS superconductor. Intriguingly, superconductivity in the observed pressure and temperature range was predicted theoretically in a similar compound H$_{3}$S. Several important questions about this remarkable result, however, are left unanswered: (1) Does the stoichiometry of the superconducting compound differ from the nominal composition, and could it be the predicted H$_{3}$S compound? (2) Is the physical origin of the anomalously high critical temperature related only to the high H phonon frequencies, or does strong electron-ion coupling play a role? We show that at experimentally relevant pressures H$_2$S is unstable, decomposing into H$_3$S and S, and that H$_3$S has a record high $T_c$ due to its covalent bonds driven metallic. The main reason for this extraordinarily high $T_c$ in H$_3$S as compared with MgB$_2$, another compound with a similar superconductivity mechanism, is the high vibrational frequency of the much lighter H atoms.