Do you want to publish a course? Click here

Relating Topological Determinants of Complex Networks to Their Spectral Properties: Structural and Dynamical Effects

151   0   0.0 ( 0 )
 Added by Claudio Castellano
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The largest eigenvalue of a networks adjacency matrix and its associated principal eigenvector are key elements for determining the topological structure and the properties of dynamical processes mediated by it. We present a physically grounded expression relating the value of the largest eigenvalue of a given network to the largest eigenvalue of two network subgraphs, considered as isolated: The hub with its immediate neighbors and the densely connected set of nodes with maximum $K$-core index. We validate this formula showing that it predicts with good accuracy the largest eigenvalue of a large set of synthetic and real-world topologies. We also present evidence of the consequences of these findings for broad classes of dynamics taking place on the networks. As a byproduct, we reveal that the spectral properties of heterogeneous networks built according to the linear preferential attachment model are qualitatively different from those of their static counterparts.



rate research

Read More

Controlling complex networks is of paramount importance in science and engineering. Despite the recent development of structural-controllability theory, we continue to lack a framework to control undirected complex networks, especially given link weights. Here we introduce an exact-controllability paradigm based on the maximum multiplicity to identify the minimum set of driver nodes required to achieve full control of networks with arbitrary structures and link-weight distributions. The framework reproduces the structural controllability of directed networks characterized by structural matrices. We explore the controllability of a large number of real and model networks, finding that dense networks with identical weights are difficult to be controlled. An efficient and accurate tool is offered to assess the controllability of large sparse and dense networks. The exact-controllability framework enables a comprehensive understanding of the impact of network properties on controllability, a fundamental problem towards our ultimate control of complex systems.
Complex networks are characterized by heterogeneous distributions of the degree of nodes, which produce a large diversification of the roles of the nodes within the network. Several centrality measures have been introduced to rank nodes based on their topological importance within a graph. Here we review and compare centrality measures based on spectral properties of graph matrices. We shall focus on PageRank, eigenvector centrality and the hub/authority scores of HITS. We derive simple relations between the measures and the (in)degree of the nodes, in some limits. We also compare the rankings obtained with different centrality measures.
The generalized $H(n)$ Hirsch index of order $n$ has been recently introduced and shown to interpolate between the degree and the $K$-core centrality in networks. We provide a detailed analytical characterization of the properties of sets of nodes having the same $H(n)$, within the annealed network approximation. The connection between the Hirsch indices and the degree is highlighted. Numerical tests in synthetic uncorrelated networks and real-world correlated ones validate the findings. We also test the use of the Hirsch index for the identification of influential spreaders in networks, finding that it is in general outperformed by the recently introduced Non-Backtracking centrality.
The whole frame of interconnections in complex networks hinges on a specific set of structural nodes, much smaller than the total size, which, if activated, would cause the spread of information to the whole network [1]; or, if immunized, would prevent the diffusion of a large scale epidemic [2,3]. Localizing this optimal, i.e. minimal, set of structural nodes, called influencers, is one of the most important problems in network science [4,5]. Despite the vast use of heuristic strategies to identify influential spreaders [6-14], the problem remains unsolved. Here, we map the problem onto optimal percolation in random networks to identify the minimal set of influencers, which arises by minimizing the energy of a many-body system, where the form of the interactions is fixed by the non-backtracking matrix [15] of the network. Big data analyses reveal that the set of optimal influencers is much smaller than the one predicted by previous heuristic centralities. Remarkably, a large number of previously neglected weakly-connected nodes emerges among the optimal influencers. These are topologically tagged as low-degree nodes surrounded by hierarchical coronas of hubs, and are uncovered only through the optimal collective interplay of all the influencers in the network. Eventually, the present theoretical framework may hold a larger degree of universality, being applicable to other hard optimization problems exhibiting a continuous transition from a known phase [16].
Multilayer networks represent systems in which there are several topological levels each one representing one kind of interaction or interdependency between the systems elements. These networks have attracted a lot of attention recently because their study allows considering different dynamical modes concurrently. Here, we revise the main concepts and tools developed up to date. Specifically, we focus on several metrics for multilayer network characterization as well as on the spectral properties of the system, which ultimately enable for the dynamical characterization of several critical phenomena. The theoretical framework is also applied for description of real-world multilayer systems.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا