Do you want to publish a course? Click here

Optical and structural properties of $mathrm{Eu^{2+}}$ doped BaBrI and BaClI crystals

95   0   0.0 ( 0 )
 Added by Roman Shendrik
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The work is necessitated by search for new materials to detect ionizing radiation. The rare-earth ions doped with ternary alkali earth-halide systems are promising scintillators showing high efficiency and energy resolution. Some aspects of crystal growth and data on the structural and luminescence properties of BaBrI and BaClI doped with low concentrations of $mathrm{Eu^{2+}}$ ions are reported. The crystals are grown by the vertical Bridgman method in sealed quartz ampoule. New crystallography data for BaClI single crystal obtained by single crystal X-ray diffraction method are presented in this paper. Emission, excitation and optical absorption spectra as well as luminescence decay kinetics are studied under excitation by X-ray, vacuum ultraviolet and ultraviolet radiation. The energies of the first 4f-5d transition in $mathrm{Eu^{2+}}$ and band gap of the crystals have been obtained. We have calculated the electronic band structure of the crystals using density functional theory as implemented in the latin{Ab Initio}. Calculated band gap energies are in accord with the experimental estimates. The energy of gaps between the occupied Eu$^{2+}$ 4f level and the valence band top are predicted. In addition, positions of lanthanide energy levels in relation to valence band have been constructed using the chemical shift model.

rate research

Read More

The crystal growth procedure and luminescence properties of pure and Eu$^{2+}$-doped BaBrI and SrBrI crystals are reported. Emission and excitation spectra were recorded under ultraviolet and vacuum ultraviolet excitations. The energy of the first Eu$^{2+}$ 4f-5d transition and SrBrI band gap are obtained. The electronic structure calculations were performed within GW approximation as implemented in the Vienna Ab Initio Simulation Package. The energy between lowest Eu$^{2+}$ 5d state and the bottom of conduction band are found based on luminescence quenching parameters. The vacuum referred binding energy diagram of lanthanide levels was constructed using the chemical shift model.
We present a study of the structural and electronic properties of highly doped topological insulator Bi2Se3 single crystals synthesized by the Bridgman method. Lattice structural characterizations by X-ray diffraction, scanning tunneling microscopy, and Raman spectroscopy confirmed the high quality of the as-grown single crystals. The topological surface states in the electronic band structure were directly re- vealed by angle-resolved photoemission spectroscopy. Transport measurements showed that the conduction was dominated by the bulk carriers and confirmed a previously observed bulk quantum Hall effect in such highly doped Bi2Se3 samples. We briefly discuss several possible strategies of reducing bulk conductance.
In this paper we study a role of F-centers, hole centers and excitons in energy transfer in Eu-doped BaBrI crystals. Optical absorption spectra, thermally stimulated (TSL) and photostimulated (PSL) luminescence in wide temperature range 7-300 K are studied in undoped and doped with different concentrations of Eu ions BaBrI crystals. Based on experimental and calculated results two possible energy transfer processes from host to Eu$^{2+}$ ions are established.
The present work reports synthesis, as well as a detailed and careful characterization of structural, magnetic, and dielectric properties of differently tempered undoped and doped CaCu3Ti4O12 (CCTO) ceramics. For this purpose, neutron and x-ray powder diffraction, SQUID measurements, and dielectric spectroscopy have been performed. Mn-, Fe-, and Ni-doped CCTO ceramics were investigated in great detail to document the influence of low-level doping with 3d metals on the antiferromagnetic structure and dielectric properties. In the light of possible magnetoelectric coupling in these doped ceramics, the dielectric measurements were also carried out in external magnetic fields up to 7 T, showing a minor but significant dependence of the dielectric constant on the applied magnetic field. Undoped CCTO is well-known for its colossal dielectric constant in a broad frequency and temperature range. With the present extended characterization of doped as well as undoped CCTO, we want to address the question why doping with only 1% Mn or 0.5% Fe decreases the room-temperature dielectric constant of CCTO by a factor of ~100 with a concomitant reduction of the conductivity, whereas 0.5% Ni doping changes the dielectric properties only slightly. In addition, diffraction experiments and magnetic investigations were undertaken to check for possible correlations of the magnitude of the colossal dielectric constants with structural details or with magnetic properties like the magnetic ordering, the Curie-Weiss temperatures, or the paramagnetic moment. It is revealed, that while the magnetic ordering temperature and the effective moment of all investigated CCTO ceramics are rather similar, there is a dramatic influence of doping and tempering time on the Curie-Weiss constant.
479 - R. Shendrik , E. A. Radzhabov , 2012
In this paper results of scintillation properties measurements of pure and Ce3+-doped strontium fluoride crystals are presented. We measure light output, scintillation decay time profile and temperature stability of light output. X-ray excited luminescence outputs corrected for spectral response of monochromator and photomultiplier for pure SrF2 and SrF2-0.3 mol.% Ce3+ are approximately 95% and 115% of NaI-Tl emission output, respectively. A photopeak with a 10% full width at half maximum is observed at approximately 84% the light output of a NaI-Tl crystal after correction for spectral response of photomultiplier, when sample 10x10 mm of pure SrF2 crystal is excited with 662 KeV photons. Corrected light output of SrF2-0.3 mol.% Ce3+ under 662 KeV photon excitation is found at approximately 64% the light output of the NaI-Tl crystal.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا