An implementation of a novel of glass-based detector with fast response and wide detection range is needed to increase resolution for ultra-high energy cosmic rays detection. Such detector has been designed and built for the Horizon-T detector system at Tien Shan high-altitude Science Station. The main characteristics, such as design, duration of the detector pulse and calibration of a single particle response are discussed.
We developed a low-mass and high-efficiency charged particle detector for an experimental study of the rare decay $K_L rightarrow pi^0 u bar{ u}$. The detector is important to suppress the background with charged particles to the level below the signal branching ratio predicted by the Standard Model (O(10$^{-11}$)). The detector consists of two layers of 3-mm-thick plastic scintillators with wavelength shifting fibers embedded and Multi Pixel Photon Counters for readout. We manufactured the counter and evaluated the performance such as light yield, timing resolution, and efficiency. With this design, we achieved the inefficiency per layer against penetrating charged particles to be less than $1.5 times 10^{-5}$, which satisfies the requirement of the KOTO experiment determined from simulation studies.
The design, construction and test of a charged particle detector made of scintillation counters read by Silicon Photomultipliers (SiPM) is described. The detector, which operates in vacuum and is used as a veto counter in the NA62 experiment at CERN, has a single channel time resolution of 1.14 ns, a spatial resolution of ~2.5 mm and an efficiency very close to 1 for penetrating charged particles.
A large 4$pi$ array of charged particle detectors has been developed at Variable Energy Cyclotron Centre to facilitate high resolution charged particle reaction and spectroscopy studies by detecting event-by-event the charged reaction products emitted in heavy ion reactions at energy $sim$ 10-60 MeV/A. The forward part ($theta sim pm $ $7^{0}$ - $pm 45^{0}$) of the array consists of 24 highly granular, high resolution charged particle telescopes, each of which is made by three layers [single sided silicon strip($Delta$E) + double sided silicon strip (E/$Delta$E) + CsI(Tl)(E)]of detectors. The backward part of the array consists of 112 CsI(Tl) detectors which are capable of detecting primarily the light charged particles (Z $le$ 2) emitted in the angular range of $theta sim pm $ $45^{0}$ - $pm 175^{0}$. The extreme forward part of the array ($theta sim pm $ $3^{0}$ - $pm 7^{0}$) is made up of 32 slow-fast plastic phoswich detectors that are capable of detecting light (Z $le$2) and heavy charged particles (3 $le$ Z $lesssim$ 20) as well as handling high count rates. The design, construction and characterization of the array has been described.
The paper describes a method of the charged particle identification, developed for the mbox{CMD-3} detector, installed at the VEPP-2000 $e^{+}e^{-}$ collider. The method is based on the application of the boosted decision trees classifiers, trained for the optimal separation of electrons, muons, pions and kaons in the momentum range from 100 to $1200~{rm MeV}/c$. The input variables for the classifiers are linear combinations of the energy depositions of charged particles in 12 layers of the liquid xenon calorimeter of the mbox{CMD-3}. The event samples for training of the classifiers are taken from the simulation. Various issues of the detector response tuning in simulation and calibration of the calorimeter strip channels are considered. Application of the method is illustrated by the examples of separation of the $e^+e^-(gamma)$ and $pi^+pi^-(gamma)$ final states and of selection of the $K^+K^-$ final state at high energies.
Together with the recent CLIC detector model CLICdet a new software suite was introduced for the simulation and reconstruction of events in this detector. This note gives a brief introduction to CLICdet and describes the CLIC experimental conditions at 380 GeV and 3 TeV, including beam-induced backgrounds. The simulation and reconstruction tools are introduced, and the physics performance obtained is described in terms of single particles, particles in jets, jet energy resolution and flavour tagging. The performance of the very forward electromagnetic calorimeters is also discussed.