Do you want to publish a course? Click here

Social Discrete Choice Models

140   0   0.0 ( 0 )
 Added by Kimon Fountoulakis
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

Human decision making underlies data generating process in multiple application areas, and models explaining and predicting choices made by individuals are in high demand. Discrete choice models are widely studied in economics and computational social sciences. As digital social networking facilitates information flow and spread of influence between individuals, new advances in modeling are needed to incorporate social information into these models in addition to characteristic features affecting individual choices. In this paper, we propose two novel models with scalable training algorithms: local logistics graph regularization (LLGR) and latent class graph regularization (LCGR) models. We add social regularization to represent similarity between friends, and we introduce latent classes to account for possible preference discrepancies between different social groups. Training of the LLGR model is performed using alternating direction method of multipliers (ADMM), and training of the LCGR model is performed using a specialized Monte Carlo expectation maximization (MCEM) algorithm. Scalability to large graphs is achieved by parallelizing computation in both the expectation and the maximization steps. The LCGR model is the first latent class classification model that incorporates social relationships among individuals represented by a given graph. To evaluate our two models, we consider three classes of data to illustrate a typical large-scale use case in internet and social media applications. We experiment on synthetic datasets to empirically explain when the proposed model is better than vanilla classification models that do not exploit graph structure. We also experiment on real-world data, including both small scale and large scale real-world datasets, to demonstrate on which types of datasets our model can be expected to outperform state-of-the-art models.



rate research

Read More

We present a deterministic model for on-line social networks (OSNs) based on transitivity and local knowledge in social interactions. In the Iterated Local Transitivity (ILT) model, at each time-step and for every existing node $x$, a new node appears which joins to the closed neighbour set of $x.$ The ILT model provably satisfies a number of both local and global properties that were observed in OSNs and other real-world complex networks, such as a densification power law, decreasing average distance, and higher clustering than in random graphs with the same average degree. Experimental studies of social networks demonstrate poor expansion properties as a consequence of the existence of communities with low number of inter-community edges. Bounds on the spectral gap for both the adjacency and normalized Laplacian matrices are proved for graphs arising from the ILT model, indicating such bad expansion properties. The cop and domination number are shown to remain the same as the graph from the initial time-step $G_0$, and the automorphism group of $G_0$ is a subgroup of the automorphism group of graphs generated at all later time-steps. A randomized version of the ILT model is presented, which exhibits a tuneable densification power law exponent, and maintains several properties of the deterministic model.
65 - Swapnil Dhamal 2017
This doctoral work focuses on three main problems related to social networks: (1) Orchestrating Network Formation: We consider the problem of orchestrating formation of a social network having a certain given topology that may be desirable for the intended usecases. Assuming the social network nodes to be strategic in forming relationships, we derive conditions under which a given topology can be uniquely obtained. We also study the efficiency and robustness of the derived conditions. (2) Multi-phase Influence Maximization: We propose that information diffusion be carried out in multiple phases rather than in a single instalment. With the objective of achieving better diffusion, we discover optimal ways of splitting the available budget among the phases, determining the time delay between consecutive phases, and also finding the individuals to be targeted for initiating the diffusion process. (3) Scalable Preference Aggregation: It is extremely useful to determine a small number of representatives of a social network such that the individual preferences of these nodes, when aggregated, reflect the aggregate preference of the entire network. Using real-world data collected from Facebook with human subjects, we discover a model that faithfully captures the spread of preferences in a social network. We hence propose fast and reliable ways of computing a truly representative aggregate preference of the entire network. In particular, we develop models and methods for solving the above problems, which primarily deal with formation and analysis of social networks.
Although social neuroscience is concerned with understanding how the brain interacts with its social environment, prevailing research in the field has primarily considered the human brain in isolation, deprived of its rich social context. Emerging work in social neuroscience that leverages tools from network analysis has begun to pursue this issue, advancing knowledge of how the human brain influences and is influenced by the structures of its social environment. In this paper, we provide an overview of key theory and methods in network analysis (especially for social systems) as an introduction for social neuroscientists who are interested in relating individual cognition to the structures of an individuals social environments. We also highlight some exciting new work as examples of how to productively use these tools to investigate questions of relevance to social neuroscientists. We include tutorials to help with practical implementation of the concepts that we discuss. We conclude by highlighting a broad range of exciting research opportunities for social neuroscientists who are interested in using network analysis to study social systems.
Predicting human mobility flows at different spatial scales is challenged by the heterogeneity of individual trajectories and the multi-scale nature of transportation networks. As vast amounts of digital traces of human behaviour become available, an opportunity arises to improve mobility models by integrating into them proxy data on mobility collected by a variety of digital platforms and location-aware services. Here we propose a hybrid model of human mobility that integrates a large-scale publicly available dataset from a popular photo-sharing system with the classical gravity model, under a stacked regression procedure. We validate the performance and generalizability of our approach using two ground-truth datasets on air travel and daily commuting in the United States: using two different cross-validation schemes we show that the hybrid model affords enhanced mobility prediction at both spatial scales.
Here, we review the research we have done on social contagion. We describe the methods we have employed (and the assumptions they have entailed) in order to examine several datasets with complementary strengths and weaknesses, including the Framingham Heart Study, the National Longitudinal Study of Adolescent Health, and other observational and experimental datasets that we and others have collected. We describe the regularities that led us to propose that human social networks may exhibit a three degrees of influence property, and we review statistical approaches we have used to characterize inter-personal influence with respect to phenomena as diverse as obesity, smoking, cooperation, and happiness. We do not claim that this work is the final word, but we do believe that it provides some novel, informative, and stimulating evidence regarding social contagion in longitudinally followed networks. Along with other scholars, we are working to develop new methods for identifying causal effects using social network data, and we believe that this area is ripe for statistical development as current methods have known and often unavoidable limitations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا