Do you want to publish a course? Click here

Watching You: Global-guided Reciprocal Learning for Video-based Person Re-identification

83   0   0.0 ( 0 )
 Added by Pingping Zhang Dr
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Video-based person re-identification (Re-ID) aims to automatically retrieve video sequences of the same person under non-overlapping cameras. To achieve this goal, it is the key to fully utilize abundant spatial and temporal cues in videos. Existing methods usually focus on the most conspicuous image regions, thus they may easily miss out fine-grained clues due to the person varieties in image sequences. To address above issues, in this paper, we propose a novel Global-guided Reciprocal Learning (GRL) framework for video-based person Re-ID. Specifically, we first propose a Global-guided Correlation Estimation (GCE) to generate feature correlation maps of local features and global features, which help to localize the high- and low-correlation regions for identifying the same person. After that, the discriminative features are disentangled into high-correlation features and low-correlation features under the guidance of the global representations. Moreover, a novel Temporal Reciprocal Learning (TRL) mechanism is designed to sequentially enhance the high-correlation semantic information and accumulate the low-correlation sub-critical clues. Extensive experiments are conducted on three public benchmarks. The experimental results indicate that our approach can achieve better performance than other state-of-the-art approaches. The code is released at https://github.com/flysnowtiger/GRL.



rate research

Read More

It is prohibitively expensive to annotate a large-scale video-based person re-identification (re-ID) dataset, which makes fully supervised methods inapplicable to real-world deployment. How to maximally reduce the annotation cost while retaining the re-ID performance becomes an interesting problem. In this paper, we address this problem by integrating an active learning scheme into a deep learning framework. Noticing that the truly matched tracklet-pairs, also denoted as true positives (TP), are the most informative samples for our re-ID model, we propose a sampling criterion to choose the most TP-likely tracklet-pairs for annotation. A view-aware sampling strategy considering view-specific biases is designed to facilitate candidate selection, followed by an adaptive resampling step to leave out the selected candidates that are unnecessary to annotate. Our method learns the re-ID model and updates the annotation set iteratively. The re-ID model is supervised by the tracklets pesudo labels that are initialized by treating each tracklet as a distinct class. With the gained annotations of the actively selected candidates, the tracklets pesudo labels are updated by label merging and further used to re-train our re-ID model. While being simple, the proposed method demonstrates its effectiveness on three video-based person re-ID datasets. Experimental results show that less than 3% pairwise annotations are needed for our method to reach comparable performance with the fully-supervised setting.
Person Re-Identification (ReID) is a challenging problem in many video analytics and surveillance applications, where a persons identity must be associated across a distributed non-overlapping network of cameras. Video-based person ReID has recently gained much interest because it allows capturing discriminant spatio-temporal information from video clips that is unavailable for image-based ReID. Despite recent advances, deep learning (DL) models for video ReID often fail to leverage this information to improve the robustness of feature representations. In this paper, the motion pattern of a person is explored as an additional cue for ReID. In particular, a flow-guided Mutual Attention network is proposed for fusion of image and optical flow sequences using any 2D-CNN backbone, allowing to encode temporal information along with spatial appearance information. Our Mutual Attention network relies on the joint spatial attention between image and optical flow features maps to activate a common set of salient features across them. In addition to flow-guided attention, we introduce a method to aggregate features from longer input streams for better video sequence-level representation. Our extensive experiments on three challenging video ReID datasets indicate that using the proposed Mutual Attention network allows to improve recognition accuracy considerably with respect to conventional gated-attention networks, and state-of-the-art methods for video-based person ReID.
Video-based person re-identification (re-ID) is an important research topic in computer vision. The key to tackling the challenging task is to exploit both spatial and temporal clues in video sequences. In this work, we propose a novel graph-based framework, namely Multi-Granular Hypergraph (MGH), to pursue better representational capabilities by modeling spatiotemporal dependencies in terms of multiple granularities. Specifically, hypergraphs with different spatial granularities are constructed using various levels of part-based features across the video sequence. In each hypergraph, different temporal granularities are captured by hyperedges that connect a set of graph nodes (i.e., part-based features) across different temporal ranges. Two critical issues (misalignment and occlusion) are explicitly addressed by the proposed hypergraph propagation and feature aggregation schemes. Finally, we further enhance the overall video representation by learning more diversified graph-level representations of multiple granularities based on mutual information minimization. Extensive experiments on three widely adopted benchmarks clearly demonstrate the effectiveness of the proposed framework. Notably, 90.0% top-1 accuracy on MARS is achieved using MGH, outperforming the state-of-the-arts. Code is available at https://github.com/daodaofr/hypergraph_reid.
Recently, the Transformer module has been transplanted from natural language processing to computer vision. This paper applies the Transformer to video-based person re-identification, where the key issue is to extract the discriminative information from a tracklet. We show that, despite the strong learning ability, the vanilla Transformer suffers from an increased risk of over-fitting, arguably due to a large number of attention parameters and insufficient training data. To solve this problem, we propose a novel pipeline where the model is pre-trained on a set of synthesized video data and then transferred to the downstream domains with the perception-constrained Spatiotemporal Transformer (STT) module and Global Transformer (GT) module. The derived algorithm achieves significant accuracy gain on three popular video-based person re-identification benchmarks, MARS, DukeMTMC-VideoReID, and LS-VID, especially when the training and testing data are from different domains. More importantly, our research sheds light on the application of the Transformer on highly-structured visual data.
This paper proposes a Temporal Complementary Learning Network that extracts complementary features of consecutive video frames for video person re-identification. Firstly, we introduce a Temporal Saliency Erasing (TSE) module including a saliency erasing operation and a series of ordered learners. Specifically, for a specific frame of a video, the saliency erasing operation drives the specific learner to mine new and complementary parts by erasing the parts activated by previous frames. Such that the diverse visual features can be discovered for consecutive frames and finally form an integral characteristic of the target identity. Furthermore, a Temporal Saliency Boosting (TSB) module is designed to propagate the salient information among video frames to enhance the salient feature. It is complementary to TSE by effectively alleviating the information loss caused by the erasing operation of TSE. Extensive experiments show our method performs favorably against state-of-the-arts. The source code is available at https://github.com/blue-blue272/VideoReID-TCLNet.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا