Do you want to publish a course? Click here

The Extreme Energy Events HECR array: status and perspectives

72   0   0.0 ( 0 )
 Added by Ivan Gnesi
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Extreme Energy Events Project is a synchronous sparse array of 52 tracking detectors for studying High Energy Cosmic Rays (HECR) and Cosmic Rays-related phenomena. The observatory is also meant to address Long Distance Correlation (LDC) phenomena: the network is deployed over a broad area covering 10 degrees in latitude and 11 in longitude. An overview of a set of preliminary results is given, extending from the study of local muon flux dependance on solar activity to the investigation of the upward-going component of muon flux traversing the EEE stations; from the search for anisotropies at the sub-TeV scale to the hints for observations of km-scale Extensive Air Shower (EAS).



rate research

Read More

Neutrinos are unique cosmic messengers. Present attempts are directed to extend the window of cosmic neutrino observation from low energies (Sun, supernovae) to much higher energies. The aim is to study the most violent processes in the Universe which accelerate charged particles to highest energies, far beyond the reach of laboratory experiments on Earth. These processes must be accompanied by the emission of neutrinos. Neutrinos are electrically neutral and interact only weakly with ordinary matter; they thus propagate through the Universe without absorption or deflection, pointing back to their origin. Their feeble interaction, however, makes them extremely difficult to detect. The years 2008-2010 have witnessed remarkable steps in developing high energy neutrino telescopes. In 2010, the cubic-kilometre neutrino telescope IceCube at the South Pole has been completed. In the Mediterranean Sea the first-generation neutrino telescope ANTARES takes data since 2008, and efforts are directed towards KM3NeT, a telescope on the scale of several cubic kilometres. The next years will be key years for opening the neutrino window to the high energy Universe. With an instrumented volume of a cubic kilometre, IceCube is entering a region with realistic discovery potential. Discoveries or non-discoveries of IceCube will have a strong impact on the future of the field and possibly mark a moment of truth. In this review, we discuss the scientific case for neutrino telescopes, describe the detection principle and its implementation in first- and second-generation installations and finally collect the existing physics results and the expectations for future detectors. We conclude with an outlook to alternative detection methods, in particular for neutrinos of extremely high energies.
439 - Todor Stanev 2009
We describe the design and performance of IceTop, the air shower array on top of the IceCube neutrino detector. After the 2008/09 antarctic summer season both detectors are deployed at almost 3/4 of their design size. With the current IceTop 59 stations we can start the study of showers of energy well above 10$^{17}$ eV. The paper also describes the first results from IceTop and our plans to study the cosmic ray composition using several different types of analysis.
275 - S. Mangano 2017
The Cherenkov Telescope Array (CTA) will be the next generation of ground based gamma-ray telescopes allowing us to study very high energy phenomena in the Universe. CTA aims to gain about a factor of ten in sensitivity compared to current experiments, extending the accessible gamma-ray energy range from a few tens of GeV to some hundreds of TeV. This increased gamma-ray source sensitivity, as well as the expected enhanced energy and spatial resolution, will allow exciting new insights in some key science topics. Additionally, CTA will provide a full sky-coverage by featuring the array located in two sites in the Northern and Southern hemispheres. This paper will describe the status of CTA and highlight some of CTAs key science themes; namely the origin of relativistic cosmic particles, the study of cosmological effects on gamma-ray propagation and the search for annihilating dark matter particles.
In the framework of the Cherenkov Telescope Array (CTA), the GCT (Gamma-ray Cherenkov Telescope) team is building a dual-mirror telescope as one of the proposed prototypes for the CTA small size class of telescopes. The telescope is based on a Schwarzschild- Couder (SC) optical design, an innovative solution for ground-based Cherenkov astronomy, which allows a compact telescope structure, a lightweight large Field of View (FoV) camera and enables good angular resolution across the entire FoV. We review the different mechanical and optical components of the telescope. In order to characterise them, the Paris prototype will be operated during several weeks in 2016. In this framework, an estimate of the expected performance of this prototype has been made, based on Monte Carlo simulations. In particular the observability of the Crab Nebula in the context of high Night Sky Background (NSB) is presented.
172 - J. Holder , E. Aliu , T. Arlen 2011
The VERITAS telescope array has been operating smoothly since 2007, and has detected gamma-ray emission above 100 GeV from 40 astrophysical sources. These include blazars, pulsar wind nebulae, supernova remnants, gamma-ray binary systems, a starburst galaxy, a radio galaxy, the Crab pulsar, and gamma-ray sources whose origin remains unidentified. In 2009, the array was reconfigured, greatly improving the sensitivity. We summarize the current status of the observatory, describe some of the scientific highlights since 2009, and outline plans for the future.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا