No Arabic abstract
The VERITAS telescope array has been operating smoothly since 2007, and has detected gamma-ray emission above 100 GeV from 40 astrophysical sources. These include blazars, pulsar wind nebulae, supernova remnants, gamma-ray binary systems, a starburst galaxy, a radio galaxy, the Crab pulsar, and gamma-ray sources whose origin remains unidentified. In 2009, the array was reconfigured, greatly improving the sensitivity. We summarize the current status of the observatory, describe some of the scientific highlights since 2009, and outline plans for the future.
The ARGO-YBJ experiment is in stable data taking since November 2007 at the YangBaJing Cosmic Ray Laboratory (Tibet, P.R. China, 4300 m a.s.l., 606 g/cm$^2$). ARGO-YBJ is facing open problems in Cosmic Ray (CR) physics in different ways. The search for CR sources is carried out by the observation of TeV gamma-ray sources both galactic and extra-galactic. The CR spectrum, composition and anisotropy are measured in a wide energy range (TeV - PeV) thus overlapping for the first time direct measurements. In this paper we summarize the current status of the experiment and describe some of the scientific highlights since 2007.
The VERITAS array of 12-m atmospheric-Cherenkov telescopes in southern Arizona began full-scale operations in 2007, and is one of the worlds most-sensitive detectors of astrophysical VHE (E>100 GeV) gamma rays. Approximately 50 blazars are known to emit VHE photons, and observations of blazars are a major focus of the VERITAS Collaboration. Nearly 2000 hours have been devoted to this program and ~130 blazars have already been observed with the array, in most cases with the deepest-ever VHE exposure. These observations have resulted in 21 detections, including 10 VHE discoveries. Recent highlights of the VERITAS blazar observation program, and the collaborations long-term blazar observation strategy, are presented.
VERITAS (Very Energetic Radiation Imaging Telescope Array System) is one of the most sensitive currently operating arrays of imaging atmospheric Cherenkov telescopes, which detect very high-energy (VHE; E > 100 GeV) gamma rays. VERITAS is currently in its 11th year of full-array operations with four 12m-diameter telescopes. Many Galactic sources of VHE gamma rays have been detected by VERITAS, such as pulsar wind nebulae, binary systems, and supernova remnants, and the study of VHE emission from these objects has enabled a deeper understanding of the underlying physical processes responsible for the observed gamma rays. Recent highlights from the VERITAS Galactic science program will be presented, including results on pulsar searches, follow-up of sources detected by HAWC, and the 50-year-period binary PSR J2032+4127.
VERITAS is one of the worlds most sensitive detectors of astrophysical VHE (E $>$ 100 GeV) gamma rays. This array of four 12-m imaging atmospheric-Cherenkov telescopes has operated for 12 years, and $>$6,000 hours of observations have been targeted on active galactic nuclei (AGN). Approximately 300 AGN have been observed with VERITAS, and 39 are detected. Most of these detections are accompanied by contemporaneous, broadband observations, which enable detailed studies of the underlying jet-powered processes. Recent highlights from the VERITAS AGN observation program and scientific results are presented.
The VERITAS array of 12-m atmospheric-Cherenkov telescopes in southern Arizona began full-scale operations in 2007, and it is one of the worlds most sensitive detectors of astrophysical VHE (E > 100 GeV) gamma rays. Forty-one blazars are known to emit VHE photons, and observations of blazars are one of the VERITAS Collaborations Key Science Projects (KSPs). More than 400 hours per year are devoted to this program, and ~100 blazars have already been observed with the array, in most cases with the deepest-ever VHE exposure. These observations have resulted in 20 detections, including 10 new VHE blazars. Highlights of the VERITAS blazar observation program, and the collaborations long-term blazar observation strategy, are presented.