No Arabic abstract
We investigate a recently proposed UV-complete composite Higgs scenario in the light of the first LHC runs. The model is based on a $SU(4)$ gauge group with global flavour symmetry breaking $SU(5) to SO(5)$, giving rise to pseudo Nambu-Goldstone bosons in addition to the Higgs doublet. This includes a real and a complex electroweak triplet with exotic electric charges. Including these, as well as constraints on other exotic states, we show that LHC measurements are not yet sensitive enough to significantly constrain the models low energy constants. The Higgs potential is described by two parameters which are on the one hand constrained by the LHC measurement of the Higgs mass and Higgs decay channels and on the other hand can be computed from correlation functions in the UV-complete theory. Hence to exclude the model at least one constant needs to be determined and to validate the Higgs potential both constants need to be reproduced by the UV-theory. Due to its UV-formulation, a certain number of low energy constants can be computed from first principle numerical simulations of the theory formulated on a lattice, which can help in establishing the validity of this model. We assess the potential impact of lattice calculations for phenomenological studies, as a preliminary step towards Monte Carlo simulations.
We explore the possibility that the right-handed top quark is composite. We examine the consequences that compositeness would have on $t bar{t}$ production at the Tevatron, and derive a weak constraint on the scale of compositeness of order a few hundred GeV from the $t bar{t}$ inclusive cross section. More detailed studies of differential properties of $t bar{t}$ production could potentially improve this limit. We find that a composite top can result in an enhancement of the $t bar{t} t bar{t}$ production rate at the LHC (of as much as $10^3$ compared to the Standatd Model four top rate). We explore observables which allow us to extract the four top rate from the backgrounds, and show that the LHC can either discover or constrain top compositeness for wide ranges of parameter space.
A novel theoretical approach to the problem of the compositeness ($X$) of a resonance or bound state is developed on the basis of the expectation values of the number operators of the free particles in the continuum. This formalism is specially suitable for effective field theories in which the bare elementary states are integrated out but that give rise to resonance and bound states when implemented in nonperturbative calculations. We demonstrate that $X=1$ for finite-range energy-independent potentials, either regular or singular. A non-trivial example for an energy-dependent potential is discussed where it is shown that $X$ is independent of any type of cutoff regulator employed. The generalization of these techniques to relativistic states is developed. We also explain how to obtain a meaningful compositeness with respect to the open channels for resonances, even if it is complex in a first turn, by making use of suitable phase-factor transformations. Defining elementariness as $X=0$, we derive a new universal criterion for the elementariness of a bound state. Along the same lines, a necessary condition for a resonance to be qualified as elementary is given. The application of the formalism here developed might be of considerable practical interest.
This note is an attempt to interpret some excesses, not yet significant due to systematics, observed by ATLAS and CMS in various analyses related to the standard channels ttH, ttZ and ttW. It is argued, within a composite interpretation of top particles, that such excesses are not necessarily related to these channels themselves, although this is not excluded, but due to the underlying presence of either vector-like heavy quarks tprime,bprime or to final states as predicted in composite theories. The outcome of this discussion is that although it will not be easy to reach an exclusive interpretation, the data collected at 13 TeV may establish the origin of this effect as coming from the four top quark topology.
We explore an electroweak symmetry breaking (EWSB) scenario based on the mixture of a fundamental Higgs doublet and an SU(4)/Sp(4) composite pseudo-Nambu-Goldstone doublet -- a particular manifestation of bosonic technicolor/induced EWSB. Taking the fundamental Higgs mass parameter to be positive, EWSB is triggered by the mixing of the doublets. This setup has several attractive features and phenomenological consequences, which we highlight: i) Unlike traditional bosonic technicolor models, the hierarchy between $Lambda_{rm TC}$ and the electroweak scale depends on vacuum (mis)alignment and can be sizable, yielding an attractive framework for natural EWSB; ii) As the strong sector is based on SU(4)/Sp(4), a fundamental (UV-complete) description of the strong sector is possible, that is informed by the lattice; iii) The lightest vector resonances occur in the 10-plet, 5-plet and singlet of Sp(4). Misalignment leads to a 10-plet parity-doubling cancelation in the $S$ parameter, and a suppressed 5-plet contribution; iv) Higgs coupling deviations are typically of $mathcal O(1%)$; v) The 10-plet isotriplet resonances decay dominantly to a massive technipion and a gauge boson, or to technipion pairs, rather than to gauge boson or fermion pairs; moreover, their couplings to fermions are small. Thus, the bounds on this setup from conventional heavy-vector-triplet searches are weak. A supersymmetric $U(1)_R$ symmetric realization is briefly described.
We construct net baryon number and strangeness susceptibilities as well as correlations between electric charge, strangeness and baryon number from experimental data on the particle production yields at midrapidity of the ALICE Collaboration at CERN. The data were taken in central Pb-Pb collisions at $sqrt{s_{rm NN}}$~=~2.76~TeV and cover one unit of rapidity. We show that the resulting fluctuations and correlations are consistent with Lattice QCD results at the chiral crossover pseudocritical temperature $T_{c} simeq$ 155 MeV. This agreement lends strong support to the assumption that the fireball created in these collisions is of thermal origin and exhibits characteristic properties expected in QCD at the transition from the quark gluon plasma to the hadronic phase. Since Lattice QCD calculations are performed at a baryochemical potential of $mu_{B}$ = 0, the comparisons with LHC data are the most direct due to the vanishing baryon transport to midrapidity at these high energies.