Do you want to publish a course? Click here

Quantifying the causal effect of speed cameras on road traffic accidents via an approximate Bayesian doubly robust estimator

53   0   0.0 ( 0 )
 Added by Daniel Graham
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

This paper quantifies the effect of speed cameras on road traffic collisions using an approximate Bayesian doubly-robust (DR) causal inference estimation method. Previous empirical work on this topic, which shows a diverse range of estimated effects, is based largely on outcome regression (OR) models using the Empirical Bayes approach or on simple before and after comparisons. Issues of causality and confounding have received little formal attention. A causal DR approach combines propensity score (PS) and OR models to give an average treatment effect (ATE) estimator that is consistent and asymptotically normal under correct specification of either of the two component models. We develop this approach within a novel approximate Bayesian framework to derive posterior predictive distributions for the ATE of speed cameras on road traffic collisions. Our results for England indicate significant reductions in the number of collisions at speed cameras sites (mean ATE = -15%). Our proposed method offers a promising approach for evaluation of transport safety interventions.



rate research

Read More

Frequentist inference has a well-established supporting theory for doubly robust causal inference based on the potential outcomes framework, which is realized via outcome regression (OR) and propensity score (PS) models. The Bayesian counterpart, however, is not obvious as the PS model loses its balancing property in joint modeling. In this paper, we propose a natural and formal Bayesian solution by bridging loss-type Bayesian inference with a utility function derived from the notion of a pseudo-population via the change of measure. Consistency of the posterior distribution is shown with correctly specified and misspecified OR models. Simulation studies suggest that our proposed method can estimate the true causal effect more efficiently and achieve the frequentist coverage if either the OR model is correctly specified or fit with a flexible function of the confounders, compared to the previous Bayesian approach via the Bayesian bootstrap. Finally, we apply this novel Bayesian method to assess the impact of speed cameras on the reduction of car collisions in England.
Transport operators have a range of intervention options available to improve or enhance their networks. Such interventions are often made in the absence of sound evidence on resulting outcomes. Cycling superhighways were promoted as a sustainable and healthy travel mode, one of the aims of which was to reduce traffic congestion. Estimating the impacts that cycle superhighways have on congestion is complicated due to the non-random assignment of such intervention over the transport network. In this paper, we analyse the causal effect of cycle superhighways utilising pre-intervention and post-intervention information on traffic and road characteristics along with socio-economic factors. We propose a modeling framework based on the propensity score and outcome regression model. The method is also extended to the doubly robust set-up. Simulation results show the superiority of the performance of the proposed method over existing competitors. The method is applied to analyse a real dataset on the London transport network. The methodology proposed can assist in effective decision making to improve network performance.
Traffic monitoring cameras are powerful tools for traffic management and essential components of intelligent road infrastructure systems. In this paper, we present a vehicle localization and traffic scene reconstruction framework using these cameras, dubbed as CAROM, i.e., CARs On the Map. CAROM processes traffic monitoring videos and converts them to anonymous data structures of vehicle type, 3D shape, position, and velocity for traffic scene reconstruction and replay. Through collaborating with a local department of transportation in the United States, we constructed a benchmarking dataset containing GPS data, roadside camera videos, and drone videos to validate the vehicle tracking results. On average, the localization error is approximately 0.8 m and 1.7 m within the range of 50 m and 120 m from the cameras, respectively.
Learning the causal structure that underlies data is a crucial step towards robust real-world decision making. The majority of existing work in causal inference focuses on determining a single directed acyclic graph (DAG) or a Markov equivalence class thereof. However, a crucial aspect to acting intelligently upon the knowledge about causal structure which has been inferred from finite data demands reasoning about its uncertainty. For instance, planning interventions to find out more about the causal mechanisms that govern our data requires quantifying epistemic uncertainty over DAGs. While Bayesian causal inference allows to do so, the posterior over DAGs becomes intractable even for a small number of variables. Aiming to overcome this issue, we propose a form of variational inference over the graphs of Structural Causal Models (SCMs). To this end, we introduce a parametric variational family modelled by an autoregressive distribution over the space of discrete DAGs. Its number of parameters does not grow exponentially with the number of variables and can be tractably learned by maximising an Evidence Lower Bound (ELBO). In our experiments, we demonstrate that the proposed variational posterior is able to provide a good approximation of the true posterior.
Analysis of road accidents is crucial to understand the factors involved and their impact. Accidents usually involve multiple variables like time, weather conditions, age of driver, etc. and hence it is challenging to analyze the data. To solve this problem, we use Multiple Correspondence Analysis (MCA) to first, filter out the most number of variables which can be visualized effectively in two dimensions and then study the correlations among these variables in a two dimensional scatter plot. Other variables, for which MCA cannot capture ample variance in the projected dimensions, we use hypothesis testing and time series analysis for the study.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا