No Arabic abstract
We analyze the single microlensing event OGLE-2015-BLG-1482 simultaneously observed from two ground-based surveys and from textit{Spitzer}. The textit{Spitzer} data exhibit finite-source effects due to the passage of the lens close to or directly over the surface of the source star as seen from textit{Spitzer}. Such finite-source effects generally yield measurements of the angular Einstein radius, which when combined with the microlens parallax derived from a comparison between the ground-based and the textit{Spitzer} light curves, yields the lens mass and lens-source relative parallax. From this analysis, we find that the lens of OGLE-2015-BLG-1482 is a very low-mass star with the mass $0.10 pm 0.02 M_odot$ or a brown dwarf with the mass $55pm 9 M_{J}$, which are respectively located at $D_{rm LS} = 0.80 pm 0.19 textrm{kpc}$ and $ D_{rm LS} = 0.54 pm 0.08 textrm{kpc}$, and thus it is the first isolated low-mass microlens that has been decisively located in the Galactic bulge. The fundamental reason for the degeneracy is that the finite-source effect is seen only in a single data point from textit{Spitzer} and this single data point gives rise to two solutions for $rho$. Because the $rho$ degeneracy can be resolved only by relatively high cadence observations around the peak, while the textit{Spitzer} cadence is typically $sim 1,{rm day}^{-1}$, we expect that events for which the finite-source effect is seen only in the textit{Spitzer} data may frequently exhibit this $rho$ degeneracy. For OGLE-2015-BLG-1482, the relative proper motion of the lens and source for the low-mass star is $mu_{rm rel} = 9.0 pm 1.9 textrm{mas yr$^{-1}$}$, while for the brown dwarf it is $5.5 pm 0.5 textrm{mas yr$^{-1}$}$. Hence, the degeneracy can be resolved within $sim 10 rm yrs$ from direct lens imaging by using next-generation instruments with high spatial resolution.
We present the first space-based microlens parallax measurement of an isolated star. From the striking differences in the lightcurve as seen from Earth and from Spitzer (~1 AU to the West), we infer a projected velocity v_helio,projected ~ 250 km/s, which strongly favors a lens in the Galactic Disk with mass M=0.23 +- 0.07 M_sun and distance D_L=3.1 +- 0.4 kpc. An ensemble of such measurements drawn from our ongoing program could be used to measure the single-lens mass function including dark objects, and also is necessary for measuring the Galactic distribution of planets since the ensemble reflects the underlying Galactic distribution of microlenses. We study the application of the many ideas to break the four-fold degeneracy first predicted by Refsdal 50 years ago. We find that this degeneracy is clearly broken, but by two unanticipated mechanisms.
We report the discovery and the analysis of the short (tE < 5 days) planetary microlensing event, OGLE-2015-BLG-1771. The event was discovered by the Optical Gravitational Lensing Experiment (OGLE), and the planetary anomaly (at I ~ 19) was captured by The Korea Microlensing Telescope Network (KMTNet). The event has three surviving planetary models that explain the observed light curves, with planet-host mass ratio q ~ 5.4 * 10^{-3}, 4.5 * 10^{-3} and 4.5 * 10^{-2}, respectively. The first model is the best-fit model, while the second model is disfavored by Deltachi^2 ~ 3. The last model is strongly disfavored by Deltachi^2 ~ 15 but not ruled out. A Bayesian analysis using a Galactic model indicates that the first two models are probably composed of a Saturn-mass planet orbiting a late M dwarf, while the third one could consist of a super-Jovian planet and a mid-mass brown dwarf. The source-lens relative proper motion is mu_rel ~ 9 mas/yr, so the source and lens could be resolved by current adaptive-optics (AO) instruments in 2021 if the lens is luminous.
We analyze the gravitational binary-lensing event OGLE-2016-BLG-0156, for which the lensing light curve displays pronounced deviations induced by microlens-parallax effects. The light curve exhibits 3 distinctive widely-separated peaks and we find that the multiple-peak feature provides a very tight constraint on the microlens-parallax effect, enabling us to precisely measure the microlens parallax $pi_{rm E}$. All the peaks are densely and continuously covered from high-cadence survey observations using globally located telescopes and the analysis of the peaks leads to the precise measurement of the angular Einstein radius $theta_{rm E}$. From the combination of the measured $pi_{rm E}$ and $theta_{rm E}$, we determine the physical parameters of the lens. It is found that the lens is a binary composed of two M dwarfs with masses $M_1=0.18pm 0.01 M_odot$ and $M_2=0.16pm 0.01 M_odot$ located at a distance $D_{rm L}= 1.35pm 0.09 {rm kpc}$. According to the estimated lens mass and distance, the flux from the lens comprises an important fraction, $sim 25%$, of the blended flux. The bright nature of the lens combined with the high relative lens-source motion, $mu=6.94pm 0.50 {rm mas} {rm yr}^{-1}$, suggests that the lens can be directly observed from future high-resolution follow-up observations.
We report discovery of the lowest mass ratio exoplanet to be found by the microlensing method in the light curve of the event OGLE~2016--BLG--1195. This planet revealed itself as a small deviation from a microlensing single lens profile from an examination of the survey data soon after the planetary signal. The duration of the planetary signal is $sim 2.5,$hours. The measured ratio of the planet mass to its host star is $q = 4.2pm 0.7 times10^{-5}$. We further estimate that the lens system is likely to comprise a cold $sim$3 Earth mass planet in a $sim,$2 AU wide orbit around a 0.2 Solar mass star at an overall distance of 7.1 kpc.
We report the discovery of an extrasolar planet detected from the combined data of a microlensing event OGLE-2015-BLG-0051/KMT-2015-BLG-0048 acquired by two microlensing surveys. Despite that the short planetary signal occurred in the very early Bulge season during which the lensing event could be seen for just about an hour, the signal was continuously and densely covered. From the Bayesian analysis using models of the mass function, matter and velocity distributions combined with the information of the angular Einstein radius, it is found that the host of the planet is located in the Galactic bulge. The planet has a mass $0.72_{-0.07}^{+0.65} M_{rm J}$ and it is orbiting a low-mass M-dwarf host with a projected separation $d_perp=0.73 pm 0.08$ AU. The discovery of the planet demonstrates the capability of the current high-cadence microlensing lensing surveys in detecting and characterizing planets.