Do you want to publish a course? Click here

The Infall of the Virgo Elliptical Galaxy M60 toward M87 and the Gaseous Structures Produced by Kelvin-Helmholtz Instabilities

84   0   0.0 ( 0 )
 Added by Marie E. Machacek
 Publication date 2017
  fields Physics
and research's language is English
 Authors R. A. Wood




Ask ChatGPT about the research

We present Chandra observations of hot gas structures, characteristic of gas stripping during infall, in the Virgo cluster elliptical galaxy M60 (NGC4649) located $1$ Mpc east of M87. $0.5-2$ keV Chandra X-ray images show a sharp leading edge in the surface brightness $12.4 pm 0.1$ kpc north and west of the galaxy center in the direction of M87 characteristic of a merger cold front due to M60s motion through the Virgo ICM. We measured a temperature of $1.00 pm 0.02$ keV for abundance $0.5 Z_odot$ inside the edge and $1.37^{+0.35}_{-0.19}$ keV for abundance $0.1 Z_odot$ in the Virgo ICM free stream region. We find that the observed jump in surface brightness yields a density ratio of $6.44^{+1.04}_{-0.67}$ between gas inside the edge and in the cluster free stream region. If the edge is a cold front due solely to the infall of M60 in the direction of M87, we find a pressure ratio of $4.7^{+1.7}_{-1.4}$ and Mach number $1.7 pm 0.3$. For 1.37 keV Virgo gas we find a total infall velocity for M60 of $1030 pm 180$ kms$^{-1}$. We calculate the motion in the plane of the sky to be $1012^{+183}_{-192}$ km$^{-1}$ implying an inclination angle $xi = 11 pm 3$ degrees. Surface brightness profiles show the presence of a faint diffuse gaseous tail. We identify filamentary, gaseous wing structures caused by the galaxys motion through the ICM. The structure and dimensions of these wings are consistent with simulations of Kelvin-Helmholtz instabilities as expected if the gas stripping is close to inviscid.

rate research

Read More

There is a well-known discrepancy in the distance estimation for M60, a giant elliptical galaxy in Virgo: the planetary nebula luminosity function (PNLF) distance moduli for this galaxy are, on average, $~0.4$ mag smaller than the values based on the surface brightness fluctuation (SBF) in the literature. We present photometry of the resolved stars in an outer field of M60 based on deep F775W and F850LP images in the Hubble Space Telescope obtained as part of the Pure Parallel Program in the archive. Detected stars are mostly old red giants in the halo of M60. With this photometry we determine a distance to M60 using the tip of the red giant branch (TRGB). A TRGB is detected at $F850LP_{rm TRGB}=26.70pm0.06$ mag, in the luminosity function of the red giants. This value corresponds to $F814W_{0,rm TRGB}=27.13pm0.06$ mag and $QT_{rm TRGB}=27.04pm0.07$ mag, where $QT$ is a color-corrected F814W magnitude. From this we derive a distance modulus, $(m-M)_0=31.05pm0.07{rm(ran)}pm0.06{rm (sys)}$ ($d=16.23pm0.50{rm (ran)}pm0.42{rm (sys)}$ Mpc). This value is $0.3$ mag larger than the PNLF distances and $0.1$ mag smaller than the SBF distances in the previous studies, indicating that the PNLF distances to M60 in the literature have larger uncertainties than the suggested values.
In this paper we investigate whether Smoothed Particle Hydrodynamics (SPH), equipped with artificial conductivity, is able to capture the physics of density/energy discontinuities in the case of the so-called shearing layers test, a test for examining Kelvin-Helmholtz (KH) instabilities. We can trace back each failure of SPH to show KH rolls to two causes: i) shock waves travelling in the simulation box and ii) particle clumping, or more generally, particle noise. The probable cause of shock waves is the Local Mixing Instability (LMI), previously identified in the literature. Particle noise on the other hand is a problem because it introduces a large error in the SPH momentum equation. We also investigate the role of artificial conductivity (AC). Including AC is necessary for the long-term behavior of the simulation (e.g. to get $lambda=1/2, 1$ KH rolls). In sensitive hydrodynamical simulations great care is however needed in selecting the AC signal velocity, with the default formulation leading to too much energy diffusion. We present new signal velocities that lead to less diffusion. The effects of the shock waves and of particle disorder become less important as the time-scale of the physical problem (for the shearing layers problem: lower density contrast and higher Mach numbers) decreases. At the resolution of current galaxy formation simulations mixing is probably not important. However, mixing could become crucial for next-generation simulations.
We use imaging from the Next Generation Virgo cluster Survey (NGVS) to present a comparative study of ultra-compact dwarf (UCD) galaxies associated with three prominent Virgo sub-clusters: those centered on the massive, red-sequence galaxies M87, M49 and M60. We show how UCDs can be selected with high completeness using a combination of half-light radius and location in color-color diagrams ($u^*iK_s$ or $u^*gz$). Although the central galaxies in each of these sub-clusters have nearly identical luminosities and stellar masses, we find large differences in the sizes of their UCD populations, with M87 containing ~3.5 and 7.8 times more UCDs than M49 and M60, respectively. The relative abundance of UCDs in the three regions scales in proportion to sub-cluster mass, as traced by X-ray gas mass, total gravitating mass, number of globular clusters, and number of nearby galaxies. We find that the UCDs are predominantly blue in color, with ~85% of the UCDs having colors similar to blue GCs and stellar nuclei of dwarf galaxies. We present evidence that UCDs surrounding M87 and M49 may follow a morphological sequence ordered by the prominence of their outer, low surface brightness envelope, ultimately merging with the sequence of nucleated low-mass galaxies, and that envelope prominence correlates with distance from either galaxy. Our analysis provides evidence that tidal stripping of nucleated galaxies is an important process in the formation of UCDs.
141 - Myung Gyoon Lee 2008
We present a photometric study of the globular clusters in the giant elliptical galaxy M60 in the Virgo cluster, based on deep, relatively wide field Washington CT_1 CCD images. The color-magnitude diagram reveals a significant population of globular clusters in M60, and a large number of young luminous clusters in NGC 4647, a small companion spiral galaxy north-west of M60. The color distribution of the globular clusters in M60 is clearly bimodal, with a blue peak at (C-T_1)=1.37, and a red peak at (C-T_1)=1.87. We derive two new transformation relations between the (C-T_1)_0 color and [Fe/H] using the data for the globular clusters in our Galaxy and M49. Using these relations we derive the metallicity distribution of the globular clusters in M60, which is also bimodal: a dominant metal-poor component with center at [Fe/H]=-1.2, and a weaker metal-rich component with center at [Fe/H]=-0.2. The radial number density profile of the globular clusters is more extended than that of the stellar halo, and the radial number density profile of the blue globular clusters is more extended than that of the red globular clusters. The number density maps of the globular clusters show that the spatial distribution of the blue globular clusters is roughly circular, while that of the red globular cluster is elongated similarly to that of the stellar halo. We estimate the total number of the globular clusters in M60 to be 3600+/-500$,and the specific frequency to be S_N=3.8+/-0.4. The mean color of the bright blue globular clusters gets redder as they get brighter in both the inner and outer region of M60. This blue tilt is seen also in the outer region of M49, the brightest Virgo galaxy. Implications of these results are discussed.
352 - E. Roediger 2012
Sloshing cold fronts (CFs) arise from minor merger triggered gas sloshing. Their detailed structure depends on the properties of the intra-cluster medium (ICM): hydrodynamical simulations predict the CFs to be distorted by Kelvin-Helmholtz instabilities (KHIs), but aligned magnetic fields, viscosity, or thermal conduction can suppress the KHIs. Thus, observing the detailed structure of sloshing CFs can be used to constrain these ICM properties. Both smooth and distorted sloshing CFs have been observed, indicating that the KHI is suppressed in some clusters, but not in all. Consequently, we need to address at least some sloshing clusters individually before drawing general conclusions about the ICM properties. We present the first detailed attempt to constrain the ICM properties in a specific cluster from the structure of its sloshing CF. Proximity and brightness make the Virgo cluster an ideal target. We combine observations and Virgo-specific hydrodynamical sloshing simulations. Here we focus on a Spitzer-like temperature dependent viscosity as a mechanism to suppress the KHI, but discuss the alternative mechanisms in detail. We identify the CF at 90 kpc north and north-east of the Virgo center as the best location in the cluster to observe a possible KHI suppression. For viscosities $gtrsim$ 10% of the Spitzer value KHIs at this CF are suppressed. We describe in detail the observable signatures at low and high viscosities, i.e. in the presence or absence of KHIs. We find indications for a low ICM viscosity in archival XMM-Newton data and demonstrate the detectability of the predicted features in deep Chandra observations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا