Do you want to publish a course? Click here

The Next Generation Virgo Cluster Survey. X. Properties of Ultra-Compact Dwarfs in the M87, M49 and M60 Regions

85   0   0.0 ( 0 )
 Added by Chengze Liu
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We use imaging from the Next Generation Virgo cluster Survey (NGVS) to present a comparative study of ultra-compact dwarf (UCD) galaxies associated with three prominent Virgo sub-clusters: those centered on the massive, red-sequence galaxies M87, M49 and M60. We show how UCDs can be selected with high completeness using a combination of half-light radius and location in color-color diagrams ($u^*iK_s$ or $u^*gz$). Although the central galaxies in each of these sub-clusters have nearly identical luminosities and stellar masses, we find large differences in the sizes of their UCD populations, with M87 containing ~3.5 and 7.8 times more UCDs than M49 and M60, respectively. The relative abundance of UCDs in the three regions scales in proportion to sub-cluster mass, as traced by X-ray gas mass, total gravitating mass, number of globular clusters, and number of nearby galaxies. We find that the UCDs are predominantly blue in color, with ~85% of the UCDs having colors similar to blue GCs and stellar nuclei of dwarf galaxies. We present evidence that UCDs surrounding M87 and M49 may follow a morphological sequence ordered by the prominence of their outer, low surface brightness envelope, ultimately merging with the sequence of nucleated low-mass galaxies, and that envelope prominence correlates with distance from either galaxy. Our analysis provides evidence that tidal stripping of nucleated galaxies is an important process in the formation of UCDs.



rate research

Read More

The origin of ultra-compact dwarfs (UCDs)--objects larger and more massive than typical globular clusters (GCs), but more compact than typical dwarf galaxies--has been hotly debated in the 15 years since their discovery. Even whether UCDs should be considered galactic in origin, or simply the most extreme GCs, is not yet settled. We present the dynamical properties of 97 spectroscopically confirmed UCDs (rh >~10 pc) and 911 GCs associated with central cD galaxy of the Virgo cluster, M87. Our UCDs, of which 89% have M_star > ~2X10^6 M_sun and 92% are as blue as the classic blue GCs, nearly triple the sample of previous confirmed Virgo UCDs, providing by far the best opportunity for studying the global dynamics of a UCD system. We found that (1) UCDs have a surface number density profile that is shallower than that of the blue GCs in the inner ~ 70 kpc and as steep as that of the red GCs at larger radii; (2) UCDs exhibit a significantly stronger rotation than the GCs, and the blue GCs seem to have a velocity field that is more consistent with that of the surrounding dwarf ellipticals than with that of UCDs; (3) UCDs have a radially increasing orbital anisotropy profile, and are tangentially-biased at radii < ~ 40 kpc and radially-biased further out. In contrast, the blue GCs become more tangentially-biased at larger radii beyond ~ 40 kpc; (4) GCs with M_star > 2X10^6 M_sun have rotational properties indistinguishable from the less massive ones, suggesting that it is the size, instead of mass, that differentiates UCDs from GCs as kinematically distinct populations. We conclude that most UCDs in M87 are not consistent with being merely the most luminous and extended examples of otherwise normal GCs. The radially-biased orbital structure of UCDs at large radii is in general agreement with the tidally threshed dwarf galaxy scenario.
We present a study of ultra compact dwarf (UCD) galaxies in the Virgo cluster based mainly on imaging from the Next Generation Virgo Cluster Survey (NGVS). Using $sim$100 deg$^{2}$ of $u^*giz$ imaging, we have identified more than 600 candidate UCDs, from the core of Virgo out to its virial radius. Candidates have been selected through a combination of magnitudes, ellipticities, colors, surface brightnesses, half-light radii and, when available, radial velocities. Candidates were also visually validated from deep NGVS images. Subsamples of varying completeness and purity have been defined to explore the properties of UCDs and compare to those of globular clusters and the nuclei of dwarf galaxies with the aim of delineating the nature and origins of UCDs. From a surface density map, we find the UCDs to be mostly concentrated within Virgos main subclusters, around its brightest galaxies. We identify several subsamples of UCDs -- i.e., the brightest, largest, and those with the most pronounced and/or asymmetric envelopes -- that could hold clues to the origin of UCDs and possible evolutionary links with dwarf nuclei. We find some evidence for such a connection from the existence of diffuse envelopes around some UCDs, and comparisons of radial distributions of UCDs and nucleated galaxies within the cluster.
We present a study of ultra-diffuse galaxies (UDGs) in the Virgo Cluster based on deep imaging from the Next Generation Virgo Cluster Survey (NGVS). Applying a new definition for the UDG class based on galaxy scaling relations, we define samples of 44 and 26 UDGs using expansive and restrictive selection criteria, respectively. Our UDG sample includes objects that are significantly fainter than previously known UDGs: i.e., more than half are fainter than $langlemurangle_e sim27.5$ mag arcsec$^{-2}$. The UDGs in Virgos core region show some evidence for being structurally distinct from normal dwarf galaxies, but this separation disappears when considering the full sample of galaxies throughout the cluster. UDGs are more centrally concentrated in their spatial distribution than other Virgo galaxies of similar luminosity, while their morphologies demonstrate that at least some UDGs owe their diffuse nature to physical processes---such as tidal interactions or low-mass mergers---that are at play within the cluster environment. The globular cluster (GC) systems of Virgo UDGs have a wide range in specific frequency ($S_N$), with a higher mean $S_N$ than normal Virgo dwarfs, but a lower mean $S_N$ than Coma UDGs at fixed luminosity. Their GCs are predominantly blue, with a small contribution from red clusters in the more massive UDGs. The combined GC luminosity function is consistent with those observed in dwarf galaxies, showing no evidence of being anomalously luminous. The diversity in their morphologies and their GC properties suggests no single process has given rise to all objects within the UDG class. Based on the available evidence, we conclude that UDGs are simply those systems that occupy the extended tails of the galaxy size and surface brightness distributions.
158 - Ling Zhu , R. J. Long , Shude Mao 2014
We study the dynamics of the giant elliptical galaxy M87 from the central to the outermost regions with the made-to-measure (M2M) method. We use a new catalogue of 922 globular cluster line-of- sight velocities extending to a projected radius of 180 kpc (equivalent to 25 M87 effective radii), and SAURON integral field unit data within the central 2.4 kpc. 263 globular clusters, mainly located beyond 40 kpc, are newly observed by the Next Generation Virgo Survey (NGVS). For the M2M modelling, the gravitational potential is taken as a combination of a luminous matter potential with a constant stellar mass-to-light ratio and a dark matter potential modelled as a logarithmic potential. Our best dynamical model returns a stellar mass-to-light ratio in the I band of M/LI = 6.0(+ -0.3) M_sun/L_sun with a dark matter potential scale velocity of 591(+ -50) km/s and scale radius of 42(+ -10) kpc. We determine the total mass of M87 within 180 kpc to be (1.5 + - 0.2) 10^13 M_sun. The mass within 40 kpc is smaller than previous estimates determined using globular cluster kinematics that did not extend beyond 45 kpc. With our new globular cluster velocities at much larger radii, we see that globular clusters around 40 kpc show an anomalously large velocity dispersion which affected previous results. The mass we derived is in good agreement with that inferred from ROSAT X-ray observation out to 180 kpc. Within 30 kpc our mass is also consistent with that inferred from Chandra and XMM-Newton X-ray observations, while within 120 kpc it is about 20% smaller. The model velocity dispersion anisotropy beta parameter for the globular clusters in M87 is small, varying from -0.2 at the centre to 0.2 at 40 kpc, and gradually decreasing to zero at 120 kpc.
We report on a large-scale study of the distribution of globular clusters (GCs) throughout the Virgo cluster, based on photometry from the Next Generation Virgo Cluster Survey, a large imaging survey covering Virgos primary subclusters to their virial radii. Using the g, (g-i) color-magnitude diagram of unresolved and marginally-resolved sources, we constructed 2-D maps of the GC distribution. We present the clearest evidence to date showing the difference in concentration between red and blue GCs over the extent of the cluster, where the red (metal-rich) GCs are largely located around the massive early-type galaxies, whilst the blue (metal-poor) GCs have a more extended spatial distribution, with significant populations present beyond 83 (215 kpc) along the major axes of M49 and M87. The GC distribution around M87 and M49 shows remarkable agreement with the shape, ellipticity and boxiness of the diffuse light surrounding both galaxies. We find evidence for spatial enhancements of GCs surrounding M87 that may be indicative of recent interactions or an ongoing merger history. We compare the GC map to the locations of Virgo galaxies and the intracluster X-ray gas, and find good agreement between these baryonic structures. The Virgo cluster contains a total population of 67300$pm$14400 GCs, of which 35% are located in M87 and M49 alone. We compute a cluster-wide specific frequency S_N,CL=$2.8pm0.7$, including Virgos diffuse light. The GC-to-baryonic mass fraction is e_b=$5.7pm1.1times10^{-4} $and the GC-to-total cluster mass formation efficiency is e_t=$2.9pm0.5times10^{-5}$, values slightly lower than, but consistent with, those derived for individual galactic halos. Our results show that the production of the complex structures in the unrelaxed Virgo cluster core (including the diffuse intracluster light) is an ongoing process.(abridged)
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا