No Arabic abstract
Correspondence homomorphisms are both a generalization of standard homomorphisms and a generalization of correspondence colourings. For a fixed target graph $H$, the problem is to decide whether an input graph $G$, with each edge labeled by a pair of permutations of $V(H)$, admits a homomorphism to $H$ `corresponding to the labels, in a sense explained below. We classify the complexity of this problem as a function of the fixed graph $H$. It turns out that there is dichotomy -- each of the problems is polynomial-time solvable or NP-complete. While most graphs $H$ yield NP-complete problems, there are interesting cases of graphs $H$ for which the problem is solved by Gaussian elimination. We also classify the complexity of the analogous correspondence {em list homomorphism} problems, and also the complexity of a {em bipartite version} of both problems. We emphasize the proofs for the case when $H$ is reflexive, but, for the record, we include a rough sketch of the remaining proofs in an Appendix.
We initiate the study of computational complexity of graph coverings, aka locally bijective graph homomorphisms, for {em graphs with semi-edges}. The notion of graph covering is a discretization of coverings between surfaces or topological spaces, a notion well known and deeply studied in classical topology. Graph covers have found applications in discrete mathematics for constructing highly symmetric graphs, and in computer science in the theory of local computations. In 1991, Abello et al. asked for a classification of the computational complexity of deciding if an input graph covers a fixed target graph, in the ordinary setting (of graphs with only edges). Although many general results are known, the full classification is still open. In spite of that, we propose to study the more general case of covering graphs composed of normal edges (including multiedges and loops) and so-called semi-edges. Semi-edges are becoming increasingly popular in modern topological graph theory, as well as in mathematical physics. They also naturally occur in the local computation setting, since they are lifted to matchings in the covering graph. We show that the presence of semi-edges makes the covering problem considerably harder; e.g., it is no longer sufficient to specify the vertex mapping induced by the covering, but one necessarily has to deal with the edge mapping as well. We show some solvable cases, and completely characterize the complexity of the already very nontrivial problem of covering one- and two-vertex (multi)graphs with semi-edges. Our NP-hardness results are proven for simple input graphs, and in the case of regular two-vertex target graphs, even for bipartite ones. This provides a strengthening of previously known results for covering graphs without semi-edges, and may contribute to better understanding of this notion and its complexity.
We prove that for every $n$-vertex graph $G$, the extension complexity of the correlation polytope of $G$ is $2^{O(mathrm{tw}(G) + log n)}$, where $mathrm{tw}(G)$ is the treewidth of $G$. Our main result is that this bound is tight for graphs contained in minor-closed classes.
Diffusion-Limited Aggregation (DLA) is a cluster-growth model that consists in a set of particles that are sequentially aggregated over a two-dimensional grid. In this paper, we introduce a biased version of the DLA model, in which particles are limited to move in a subset of possible directions. We denote by $k$-DLA the model where the particles move only in $k$ possible directions. We study the biased DLA model from the perspective of Computational Complexity, defining two decision problems The first problem is Prediction, whose input is a site of the grid $c$ and a sequence $S$ of walks, representing the trajectories of a set of particles. The question is whether a particle stops at site $c$ when sequence $S$ is realized. The second problem is Realization, where the input is a set of positions of the grid, $P$. The question is whether there exists a sequence $S$ that realizes $P$, i.e. all particles of $S$ exactly occupy the positions in $P$. Our aim is to classify the Prediciton and Realization problems for the differe
Let $G$ be a graph such that each edge has its list of available colors, and assume that each list is a subset of the common set consisting of $k$ colors. Suppose that we are given two list edge-colorings $f_0$ and $f_r$ of $G$, and asked whether there exists a sequence of list edge-colorings of $G$ between $f_0$ and $f_r$ such that each list edge-coloring can be obtained from the previous one by changing a color assignment of exactly one edge. This problem is known to be PSPACE-complete for every integer $k ge 6$ and planar graphs of maximum degree three, but any complexity hardness was unknown for the non-list variant. In this paper, we first improve the known result by proving that, for every integer $k ge 4$, the problem remains PSPACE-complete even if an input graph is planar, bounded bandwidth, and of maximum degree three. We then give the first complexity hardness result for the non-list variant: for every integer $k ge 5$, we prove that the non-list variant is PSPACE-complete even if an input graph is planar, of bandwidth linear in $k$, and of maximum degree $k$.
We study the dynamic and complexity of the generalized Q2R automaton. We show the existence of non-polynomial cycles as well as its capability to simulate with the synchronous update the classical version of the automaton updated under a block sequential update scheme. Furthermore, we show that the decision problem consisting in determine if a given node in the network changes its state is textbf{P}-Hard.