Do you want to publish a course? Click here

The Complexity of (List) Edge-Coloring Reconfiguration Problem

93   0   0.0 ( 0 )
 Added by Akira Suzuki
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

Let $G$ be a graph such that each edge has its list of available colors, and assume that each list is a subset of the common set consisting of $k$ colors. Suppose that we are given two list edge-colorings $f_0$ and $f_r$ of $G$, and asked whether there exists a sequence of list edge-colorings of $G$ between $f_0$ and $f_r$ such that each list edge-coloring can be obtained from the previous one by changing a color assignment of exactly one edge. This problem is known to be PSPACE-complete for every integer $k ge 6$ and planar graphs of maximum degree three, but any complexity hardness was unknown for the non-list variant. In this paper, we first improve the known result by proving that, for every integer $k ge 4$, the problem remains PSPACE-complete even if an input graph is planar, bounded bandwidth, and of maximum degree three. We then give the first complexity hardness result for the non-list variant: for every integer $k ge 5$, we prove that the non-list variant is PSPACE-complete even if an input graph is planar, of bandwidth linear in $k$, and of maximum degree $k$.



rate research

Read More

Motivated by recent computational models for redistricting and detection of gerrymandering, we study the following problem on graph partitions. Given a graph $G$ and an integer $kgeq 1$, a $k$-district map of $G$ is a partition of $V(G)$ into $k$ nonempty subsets, called districts, each of which induces a connected subgraph of $G$. A switch is an operation that modifies a $k$-district map by reassigning a subset of vertices from one district to an adjacent district; a 1-switch is a switch that moves a single vertex. We study the connectivity of the configuration space of all $k$-district maps of a graph $G$ under 1-switch operations. We give a combinatorial characterization for the connectedness of this space that can be tested efficiently. We prove that it is NP-complete to decide whether there exists a sequence of 1-switches that takes a given $k$-district map into another; and NP-hard to find the shortest such sequence (even if a sequence of polynomial length is known to exist). We also present efficient algorithms for computing a sequence of 1-switches that takes a given $k$-district map into another when the space is connected, and show that these algorithms perform a worst-case optimal number of switches up to constant factors.
Golovach, Paulusma and Song (Inf. Comput. 2014) asked to determine the parameterized complexity of the following problems parameterized by $k$: (1) Given a graph $G$, a clique modulator $D$ (a clique modulator is a set of vertices, whose removal results in a clique) of size $k$ for $G$, and a list $L(v)$ of colors for every $vin V(G)$, decide whether $G$ has a proper list coloring; (2) Given a graph $G$, a clique modulator $D$ of size $k$ for $G$, and a pre-coloring $lambda_P: X rightarrow Q$ for $X subseteq V(G),$ decide whether $lambda_P$ can be extended to a proper coloring of $G$ using only colors from $Q.$ For Problem 1 we design an $O^*(2^k)$-time randomized algorithm and for Problem 2 we obtain a kernel with at most $3k$ vertices. Banik et al. (IWOCA 2019) proved the the following problem is fixed-parameter tractable and asked whether it admits a polynomial kernel: Given a graph $G$, an integer $k$, and a list $L(v)$ of exactly $n-k$ colors for every $v in V(G),$ decide whether there is a proper list coloring for $G.$ We obtain a kernel with $O(k^2)$ vertices and colors and a compression to a variation of the problem with $O(k)$ vertices and $O(k^2)$ colors.
144 - Vance Faber 2017
Motivated by the ErdH{o}s-Faber-Lovasz (EFL) conjecture for hypergraphs, we consider the list edge coloring of linear hypergraphs. We discuss several conjectures for list edge coloring linear hypergraphs that generalize both EFL and Vizings theorem for graphs. For example, we conjecture that in a linear hypergraph of rank 3, the list edge chromatic number is at most 2 times the maximum degree plus 1. We show that for sufficiently large fixed rank and sufficiently large degree, the conjectures are true.
We investigate the parameterized complexity of the following edge coloring problem motivated by the problem of channel assignment in wireless networks. For an integer q>1 and a graph G, the goal is to find a coloring of the edges of G with the maximum number of colors such that every vertex of the graph sees at most q colors. This problem is NP-hard for q>1, and has been well-studied from the point of view of approximation. Our main focus is the case when q=2, which is already theoretically intricate and practically relevant. We show fixed-parameter tractable algorithms for both the standard and the dual parameter, and for the latter problem, the result is based on a linear vertex kernel.
Motivated by applications in gerrymandering detection, we study a reconfiguration problem on connected partitions of a connected graph $G$. A partition of $V(G)$ is emph{connected} if every part induces a connected subgraph. In many applications, it is desirable to obtain parts of roughly the same size, possibly with some slack $s$. A emph{Balanced Connected $k$-Partition with slack $s$}, denoted emph{$(k,s)$-BCP}, is a partition of $V(G)$ into $k$ nonempty subsets, of sizes $n_1,ldots , n_k$ with $|n_i-n/k|leq s$, each of which induces a connected subgraph (when $s=0$, the $k$ parts are perfectly balanced, and we call it emph{$k$-BCP} for short). A emph{recombination} is an operation that takes a $(k,s)$-BCP of a graph $G$ and produces another by merging two adjacent subgraphs and repartitioning them. Given two $k$-BCPs, $A$ and $B$, of $G$ and a slack $sgeq 0$, we wish to determine whether there exists a sequence of recombinations that transform $A$ into $B$ via $(k,s)$-BCPs. We obtain four results related to this problem: (1) When $s$ is unbounded, the transformation is always possible using at most $6(k-1)$ recombinations. (2) If $G$ is Hamiltonian, the transformation is possible using $O(kn)$ recombinations for any $s ge n/k$, and (3) we provide negative instances for $s leq n/(3k)$. (4) We show that the problem is PSPACE-complete when $k in O(n^{varepsilon})$ and $s in O(n^{1-varepsilon})$, for any constant $0 < varepsilon le 1$, even for restricted settings such as when $G$ is an edge-maximal planar graph or when $k=3$ and $G$ is planar.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا