No Arabic abstract
For given representation of finite groups on a finite dimension complex vector space, we can define exterior powers of representations. In 1973, Knutson found one of methods of calculating the character of exterior powers of representations with properties of $lambda$-rings. In this paper, we base this result of Knutson, and relate characters and elements of necklace rings, which were introduced by N.Metropolis and G-C.Rota in 1983, via a generating function of the character of exterior powers of representations. We focus on integer-valued characters and discuss a relation between integer-valued characters and element of necklace rings which has finite support and is contained in some images of truncated operations.
In this paper we consider symmetric powers representation and exterior powers representation of finite groups, which generated by the representation which has finite dimension over the complex field. We calculate the multiplicity of irreducible component of two representations of some representation by using a character theory of representation and a pre-lambda-ring, for example, the regular representation.
We classify the localizing tensor ideals of the integral stable module category for any finite group $G$. This results in a generic classification of $mathbb{Z}[G]$-lattices of finite and infinite rank and globalizes the modular case established in celebrated work of Benson, Iyengar, and Krause. Further consequences include a verification of the generalized telescope conjecture in this context, a tensor product formula for integral cohomological support, as well as a generalization of Quillens stratification theorem for group cohomology. Our proof makes use of novel descent techniques for stratification in tensor-triangular geometry that are of independent interest.
Let $q$ be a power of a prime $p$, let $G$ be a finite Chevalley group over $mathbb{F}_q$ and let $U$ be a Sylow $p$-subgroup of $G$; we assume that $p$ is not a very bad prime for $G$. We explain a procedure of reduction of irreducible complex characters of $U$, which leads to an algorithm whose goal is to obtain a parametrization of the irreducible characters of $U$ along with a means to construct these characters as induced characters. A focus in this paper is determining the parametrization when $G$ is of type $mathrm{F}_4$, where we observe that the parametrization is uniform over good primes $p > 3$, but differs for the bad prime $p = 3$. We also explain how it has been applied for all groups of rank $4$ or less.
We determine the multiplicities of irreducible summands in the symmetric and the exterior squares of hook representations of symmetric groups over an algebraically closed field of characteristic zero.
We study multiplicities of unipotent characters in tensor products of unipotent characters of GL(n,q). We prove that these multiplicities are polynomials in q with non-negative integer coefficients. We study the degree of these polynomials and give a necessary and sufficient condition in terms of the representation theory of symmetric groups for these polynomials to be non-zero.