Do you want to publish a course? Click here

Tensor products of unipotent characters of general linear groups over finite fields

207   0   0.0 ( 0 )
 Added by Emmanuel Letellier
 Publication date 2012
  fields
and research's language is English




Ask ChatGPT about the research

We study multiplicities of unipotent characters in tensor products of unipotent characters of GL(n,q). We prove that these multiplicities are polynomials in q with non-negative integer coefficients. We study the degree of these polynomials and give a necessary and sufficient condition in terms of the representation theory of symmetric groups for these polynomials to be non-zero.

rate research

Read More

129 - Tyrone Crisp , Ehud Meir , Uri Onn 2017
We construct, for any finite commutative ring $R$, a family of representations of the general linear group $mathrm{GL}_n(R)$ whose intertwining properties mirror those of the principal series for $mathrm{GL}_n$ over a finite field.
In previous work, the authors confirmed the speculation of J. G. Thompson that certain multiquadratic fields are generated by specified character values of sufficiently large alternating groups $A_n$. Here we address the natural generalization of this speculation to the finite general linear groups $mathrm{GL}_mleft(mathbb{F}_qright)$ and $mathrm{SL}_2left(mathbb{F}_qright)$.
170 - Behrooz Mirzaii 2020
For an infinite field $F$, we study the cokernel of the map of homology groups $H_{n+1}(mathrm{GL}_{n-1}(F),mathbb{k}) to H_{n+1}(mathrm{GL}_{n}(F),mathbb{k})$, where $mathbb{k}$ is a field such that $(n-2)!in mathbb{k}^times$, and the kernel of the natural map $H_{n}big(mathrm{GL}_{n-1}(F),mathbb{Z}big[frac{1}{(n-2)!} big] big) to H_{n}big(mathrm{GL}_{n}(F),mathbb{Z}big[frac{1}{(n-2)!} big]big)$. We give conjectural estimates of these cokernel and kernel and prove our conjectures for $nleq 4$.
Let $p$ be any prime. Let $P_n$ be a Sylow $p$-subgroup of the symmetric group $S_n$. Let $phi$ and $psi$ be linear characters of $P_n$ and let $N$ be the normaliser of $P_n$ in $S_n$. In this article we show that the inductions of $phi$ and $psi$ to $S_n$ are equal if, and only if, $phi$ and $psi$ are $N$--conjugate. This is an analogue for symmetric groups of a result of Navarro for $p$-solvable groups.
We classify all triples $(G,V,H)$ such that $SL_n(q)leq Gleq GL_n(q)$, $V$ is a representation of $G$ of dimension greater than one over an algebraically closed field $FF$ of characteristic coprime to $q$, and $H$ is a proper subgroup of $G$ such that the restriction $Vdar_{H}$ is irreducible. This problem is a natural part of the Aschbacher-Scott program on maximal subgroups of finite classical groups.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا