Do you want to publish a course? Click here

Dirac dispersion and non-trivial Berrys phase in three-dimensional semimetal RhSb3

196   0   0.0 ( 0 )
 Added by Kefeng Wang Dr.
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report observations of magnetoresistance, quantum oscillations and angle-resolved photoemission in RhSb$_3$, a unfilled skutterudite semimetal with low carrier density. The calculated electronic band structure of RhSb$_3$ entails a $Z_2$ quantum number $ u_0=0, u_1= u_2= u_3=1$ in analogy to strong topological insulators, and inverted linear valence/conduction bands that touch at discrete points close to the Fermi level, in agreement with angle-resolved photoemission results. Transport experiments reveal an unsaturated linear magnetoresistance that approaches a factor of 200 at 60 T magnetic fields, and quantum oscillations observable up to 150~K that are consistent with a large Fermi velocity ($sim 1.3times 10^6$ ms$^{-1}$), high carrier mobility ($sim 14$ $m^2$/Vs), and small three dimensional hole pockets with nontrivial Berry phase. A very small, sample-dependent effective mass that falls as low as $0.015(7)$ bare masses scales with Fermi velocity, suggesting RhSb$_3$ is a new class of zero-gap three-dimensional Dirac semimetal.



rate research

Read More

395 - Z. K. Liu , B. Zhou , Z. J. Wang 2013
Three-dimensional (3D) topological Dirac semimetals (TDSs) represent a novel state of quantum matter that can be viewed as 3D graphene. In contrast to two-dimensional (2D) Dirac fermions in graphene or on the surface of 3D topological insulators, TDSs possess 3D Dirac fermions in the bulk. The TDS is also an important boundary state mediating numerous novel quantum states, such as topological insulators, Weyl semi-metals, Axion insulators and topological superconductors. By investigating the electronic structure of Na3Bi with angle resolved photoemission spectroscopy, we discovered 3D Dirac fermions with linear dispersions along all momentum directions for the first time. Furthermore, we demonstrated that the 3D Dirac fermions in Na3Bi were protected by the bulk crystal symmetry. Our results establish that Na3Bi is the first model system of 3D TDSs, which can also serve as an ideal platform for the systematic study of quantum phase transitions between rich novel topological quantum states.
Harmonic generation is a general characteristic of driven nonlinear systems, and serves as an efficient tool for investigating the fundamental principles that govern the ultrafast nonlinear dynamics. In atomic gases, high-harmonic radiation is produced via a three-step process of ionization, acceleration, and recollision by strong-field infrared laser. This mechanism has been intensively investigated in the extreme ultraviolet and soft X-ray regions, forming the basis of attosecond research. In solid-state materials, which are characterized by crystalline symmetry and strong interactions, yielding of harmonics has just recently been reported. The observed high-harmonic generation was interpreted with fundamentally different mechanisms, such as interband tunneling combined with dynamical Bloch oscillations, intraband thermodynamics and nonlinear dynamics, and many-body electronic interactions. Here, in a distinctly different context of three-dimensional Dirac semimetal, we report on experimental observation of high-harmonic generation up to the seventh order driven by strong-field terahertz pulses. The observed non-perturbative high-harmonic generation is interpreted as a generic feature of terahertz-field driven nonlinear intraband kinetics of Dirac fermions. We anticipate that our results will trigger great interest in detection, manipulation, and coherent control of the nonlinear response in the vast family of three-dimensional Dirac and Weyl materials.
176 - Huinan Xia , Yang Li , Min Cai 2018
Three-dimensional (3D) topological Dirac semimetal, when thinned down to 2D few layers, is expected to possess gapped Dirac nodes via quantum confinement effect and concomitantly display the intriguing quantum spin Hall (QSH) insulator phase. However, the 3D-to-2D crossover and the associated topological phase transition, which is valuable for understanding the topological quantum phases, remain unexplored. Here, we synthesize high-quality Na3Bi thin films with R3*R3 reconstruction on graphene, and systematically characterize their thickness-dependent electronic and topological properties by scanning tunneling microscopy/spectroscopy in combination with first-principles calculations. We demonstrate that Dirac gaps emerge in Na3Bi films, providing spectroscopic evidences of dimensional crossover from a 3D semimetal to a 2D topological insulator. Importantly, the Dirac gaps are revealed to be of sizable magnitudes on 3 and 4 monolayers (72 and 65 meV, respectively) with topologically nontrivial edge states. Moreover, the Fermi energy of a Na3Bi film can be tuned via certain growth process, thus offering a viable way for achieving charge neutrality in transport. The feasibility of controlling Dirac gap opening and charge neutrality enables realizing intrinsic high-temperature QSH effect in Na3Bi films and achieving potential applications in topological devices.
We report the observation of Shubnikov-de Haas oscillations in bulk single crystals of monoclinic SrIrO$_3$ in magnetic fields up to 35 T. Analysis of the oscillations reveals a Fermi surface comprising multiple small pockets with effective masses up to five times larger than the calculated band mass. Phase analysis of the oscillations indicates non-trivial topological character of the dominant orbit while ab-initio calculations reveal robust linear band-crossings at the Brillouin zone boundary. These collective findings, coupled with knowledge of the evolution of the electronic state across the Ruddlesden-Popper iridate series, establishes monoclinic SrIrO$_3$ as a topological semimetal on the boundary of the Mott metal-insulator transition.
The three-dimensional topological semimetals represent a new quantum state of matter. Distinct from the surface state in the topological insulators that exhibits linear dispersion in two-dimensional momentum plane, the three-dimensional semimetals host bulk band dispersions linearly along all directions, forming discrete Dirac cones in three-dimensional momentum space. In addition to the gapless points (Weyl/Dirac nodes) in the bulk, the three-dimensional Weyl/Dirac semimetals are also characterized by topologically protected surface state with Fermi arcs on their specific surface. The Weyl/Dirac semimetals have attracted much attention recently they provide a venue not only to explore unique quantum phenomena but also to show potential applications. While Cd3As2 is proposed to be a viable candidate of a Dirac semimetal, more experimental evidence and theoretical investigation are necessary to pin down its nature. In particular, the topological surface state, the hallmark of the three-dimensional semimetal, has not been observed in Cd3As2. Here we report the electronic structure of Cd3As2 investigated by angle-resolved photoemission measurements on the (112) crystal surface and detailed band structure calculations. The measured Fermi surface and band structure show a good agreement with the band structure calculations with two bulk Dirac-like bands approaching the Fermi level and forming Dirac points near the Brillouin zone center. Moreover, the topological surface state with a linear dispersion approaching the Fermi level is identified for the first time. These results provide strong experimental evidence on the nature of topologically non-trivial three-dimensional Dirac cones in Cd3As2.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا