Do you want to publish a course? Click here

Bernoulli Factories and Black-Box Reductions in Mechanism Design

86   0   0.0 ( 0 )
 Added by Rad Niazadeh
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

We provide a polynomial time reduction from Bayesian incentive compatible mechanism design to Bayesian algorithm design for welfare maximization problems. Unlike prior results, our reduction achieves exact incentive compatibility for problems with multi-dimensional and continuous type spaces. The key technical barrier preventing exact incentive compatibility in prior black-box reductions is that repairing violations of incentive constraints requires understanding the distribution of the mechanisms output, which is typically #P-hard to compute. Reductions that instead estimate the output distribution by sampling inevitably suffer from sampling error, which typically precludes exact incentive compatibility. We overcome this barrier by employing and generalizing the computational model in the literature on $textit{Bernoulli factories}$. In a Bernoulli factory problem, one is given a function mapping the bias of an input coin to that of an output coin, and the challenge is to efficiently simulate the output coin given only sample access to the input coin. This is the key ingredient in designing an incentive compatible mechanism for bipartite matching, which can be used to make the approximately incentive compatible reduction of Hartline et al. (2015) exactly incentive compatible.



rate research

Read More

The study of approximate mechanism design for facility location problems has been in the center of research at the intersection of artificial intelligence and economics for the last decades, largely due to its practical importance in various domains, such as social planning and clustering. At a high level, the goal is to design mechanisms to select a set of locations on which to build a set of facilities, aiming to optimize some social objective and ensure desirable properties based on the preferences of strategic agents, who might have incentives to misreport their private information such as their locations. This paper presents a comprehensive survey of the significant progress that has been made since the introduction of the problem, highlighting the different variants and methodologies, as well as the most interesting directions for future research.
Game theory is often used as a tool to analyze decentralized systems and their properties, in particular, blockchains. In this note, we take the opposite view. We argue that blockchains can and should be used to implement economic mechanisms because they can help to overcome problems that occur if trust in the mechanism designer cannot be assumed. Mechanism design deals with the allocation of resources to agents, often by extracting private information from them. Some mechanisms are immune to early information disclosure, while others may heavily depend on it. Some mechanisms have to randomize to achieve fairness and efficiency. Both issues, information disclosure, and randomness require trust in the mechanism designer. If there is no trust, mechanisms can be manipulated. We claim that mechanisms that use randomness or sequential information disclosure are much harder, if not impossible, to audit. Therefore, centralized implementation is often not a good solution. We consider some of the most frequently used mechanisms in practice and identify circumstances under which manipulation is possible. We propose a decentralized implementation of such mechanisms, that can be, in practical terms, realized by blockchain technology. Moreover, we argue in which environments a decentralized implementation of a mechanism brings a significant advantage.
We pose and study a fundamental algorithmic problem which we term mixture selection, arising as a building block in a number of game-theoretic applications: Given a function $g$ from the $n$-dimensional hypercube to the bounded interval $[-1,1]$, and an $n times m$ matrix $A$ with bounded entries, maximize $g(Ax)$ over $x$ in the $m$-dimensional simplex. This problem arises naturally when one seeks to design a lottery over items for sale in an auction, or craft the posterior beliefs for agents in a Bayesian game through the provision of information (a.k.a. signaling). We present an approximation algorithm for this problem when $g$ simultaneously satisfies two smoothness properties: Lipschitz continuity with respect to the $L^infty$ norm, and noise stability. The latter notion, which we define and cater to our setting, controls the degree to which low-probability errors in the inputs of $g$ can impact its output. When $g$ is both $O(1)$-Lipschitz continuous and $O(1)$-stable, we obtain an (additive) PTAS for mixture selection. We also show that neither assumption suffices by itself for an additive PTAS, and both assumptions together do not suffice for an additive FPTAS. We apply our algorithm to different game-theoretic applications from mechanism design and optimal signaling. We make progress on a number of open problems suggested in prior work by easily reducing them to mixture selection: we resolve an important special case of the small-menu lottery design problem posed by Dughmi, Han, and Nisan; we resolve the problem of revenue-maximizing signaling in Bayesian second-price auctions posed by Emek et al. and Miltersen and Sheffet; we design a quasipolynomial-time approximation scheme for the optimal signaling problem in normal form games suggested by Dughmi; and we design an approximation algorithm for the optimal signaling problem in the voting model of Alonso and C^{a}mara.
We study Bayesian automated mechanism design in unstructured dynamic environments, where a principal repeatedly interacts with an agent, and takes actions based on the strategic agents report of the current state of the world. Both the principal and the agent can have arbitrary and potentially different valuations for the actions taken, possibly also depending on the actual state of the world. Moreover, at any time, the state of the world may evolve arbitrarily depending on the action taken by the principal. The goal is to compute an optimal mechanism which maximizes the principals utility in the face of the self-interested strategic agent. We give an efficient algorithm for computing optimal mechanisms, with or without payments, under different individual-rationality constraints, when the time horizon is constant. Our algorithm is based on a sophisticated linear program formulation, which can be customized in various ways to accommodate richer constraints. For environments with large time horizons, we show that the principals optimal utility is hard to approximate within a certain constant factor, complementing our algorithmic result. We further consider a special case of the problem where the agent is myopic, and give a refined efficient algorithm whose time complexity scales linearly in the time horizon. Moreover, we show that memoryless mechanisms do not provide a good solution for our problem, in terms of both optimality and computational tractability. These results paint a relatively complete picture for automated dynamic mechanism design in unstructured environments. Finally, we present experimental results where our algorithms are applied to synthetic dynamic environments with different characteristics, which not only serve as a proof of concept for our algorithms, but also exhibit intriguing phenomena in dynamic mechanism design.
Complex networks tend to display communities which are groups of nodes cohesively connected among themselves in one group and sparsely connected to the remainder of the network. Detecting such communities is an important computational problem, since it provides an insight into the functionality of networks. Further, investigating community structure in a dynamic network, where the network is subject to change, is even more challenging. This paper presents a game-theoretical technique for detecting community structures in dynamic as well as static complex networks. In our method, each node takes the role of a player that attempts to gain a higher payoff by joining one or more communities or switching between them. The goal of the game is to reveal community structure formed by these players by finding a Nash-equilibrium point among them. To the best of our knowledge, this is the first game-theoretic algorithm which is able to extract overlapping communities from either static or dynamic networks. We present the experimental results illustrating the effectiveness of the proposed method on both synthetic and real-world networks.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا