No Arabic abstract
We present a theory of flagellar synchronization in the green alga Chlamydomonas, using full treatment of flagellar hydrodynamics. We find that two recently proposed synchronization mechanisms, basal coupling and flagellar waveform compliance, stabilize anti-phase synchronization if operative in isolation. Their nonlinear superposition, however, stabilizes in-phase synchronization as observed in experiments. Our theory predicts different synchronization dynamics in fluids of increased viscosity or external flow, suggesting a non-invasive way to control synchronization by hydrodynamic coupling.
Cilia and flagella exhibit regular bending waves that perform mechanical work on the surrounding fluid, to propel cellular swimmers and pump fluids inside organisms. Here, we quantify a force-velocity relationship of the beating flagellum, by exposing flagellated emph{Chlamydomonas} cells to controlled microfluidic flows. A simple theory of flagellar limit-cycle oscillations, calibrated by measurements in the absence of flow, reproduces this relationship quantitatively. We derive a link between the chemo-mechanical efficiency of the flagellar beat and its ability to synchronize to oscillatory flows.
Due to time delays in signal transmission and processing, phase lags are inevitable in realistic complex oscillator networks. Conventional wisdom is that phase lags are detrimental to network synchronization. Here we show that judiciously chosen phase lag modulations can result in significantly enhanced network synchronization. We justify our strategy of phase modulation, demonstrate its power in facilitating and enhancing network synchronization with synthetic and empirical network models, and provide an analytic understanding of the underlying mechanism. Our work provides a new approach to synchronization optimization in complex networks, with insights into control of complex nonlinear networks.
Synchronous and directed ciliary beating in trachea allows transport and ejection of virus and dust from the body. This ciliary function depends on the coordinated configuration of basal bodies (root of cilia) in apical cell membrane. However, the mechanism for their formation remains unknown. In this study, we show that the polarity in apical microtubule bundles plays a significant role in the organization of basal bodies. A mathematical model incorporating polarity has been formulated which provides a coherent explanation and is able to reproduce experimental observations. We have clarified both necessity (why polarity is required for pattern formation) and sufficiency (how polarity works for pattern formation) of cytoskeleton polarity for correct pattering of basal bodies with verification by experimental data. This model further leads us to a possible mechanism for cellular chirality.
We propose a novel formulation for phase synchronization -- the statistical problem of jointly estimating alignment angles from noisy pairwise comparisons -- as a nonconvex optimization problem that enforces consistency among the pairwise comparisons in multiple frequency channels. Inspired by harmonic retrieval in signal processing, we develop a simple yet efficient two-stage algorithm that leverages the multi-frequency information. We demonstrate in theory and practice that the proposed algorithm significantly outperforms state-of-the-art phase synchronization algorithms, at a mild computational costs incurred by using the extra frequency channels. We also extend our algorithmic framework to general synchronization problems over compact Lie groups.
Groups of beating flagella or cilia often synchronize so that neighboring filaments have identical frequencies and phases. A prime example is provided by the unicellular biflagellate Chlamydomonas reinhardtii, which typically displays synchronous in-phase beating in a low-Reynolds number version of breaststroke swimming. We report here the discovery that ptx1, a flagellar dominance mutant of C. reinhardtii, can exhibit synchronization in precise antiphase, as in the freestyle swimming stroke. Long-duration high-speed imaging shows that ptx1 flagella switch stochastically between in-phase and antiphase states, and that the latter has a distinct waveform and significantly higher frequency, both of which are strikingly similar to those found during phase slips that stochastically interrupt in-phase beating of the wildtype. Possible mechanisms underlying these observations are discussed.